This is critical to maintain better thermal properties, especially thermal conductivity as well as low particle content along with organized particle dispersion in polymer nanocomposites. Thus, this study is designed to develop a nanocomposite containing a constant reinforcing load of binary particles (carbon and alumina) in the binary matrix of polypropylene (PP)/poly ethylene‐co‐vinyl acetate (EVA). The samples were prepared through the melt blending and hot pressing technique. Compared to pure PP/EVA matrix, the nanocomposites showed a shift in Fourier‐transform infrared spectroscopy peak and absorption intensity, which proves better interaction of nanoparticles with the matrix. The Scanning Electron Microscopy analysis showed the nanocomposite having carbon (C) and alumina (A) relative ratio 2:3 offered even structure with better distribution of nanoparticles compared to other nanocomposites. Also, Differential scanning calorimetry and Thermogravimetric analysis revealed that alumina‐rich binary nanoparticles reinforced composites offer an efficient improvement in thermal behavior. Moreover, the nanocomposite containing high alumina relative ratio (C: A = 2:3) gives a sharp shift in thermal conductivity of 1.57 W/m‐k from 1.2 W/m‐k of carbon‐rich nanocomposite (C: A = 3:2) and 0.16 W/m‐k of pure PP/EVA. However, these relative properties emphasize the important role of this nanocomposite as a programmable thermal material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.