Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.
Background-Gap junction resistivity, R j , has been proposed as a key determinant of conduction velocity (CV). However, studies in connexin-gene knockout mice demonstrated significant CV slowing only with near-complete connexin deletion, and these findings led to the concept of a significant redundancy of myocardial gap junctions. We challenged this prevailing concept and addressed the hypothesis that there is a continuous relationship between R j and CV, each independently measured in human and guinea-pig myocardium. Methods and Results-R j and CV were directly measured by oil-gap impedance and microelectrode techniques in human left ventricular myocardium from patients with hypertrophic cardiomyopathy and in guinea-pig atrial and ventricular myocardium before and during pharmacological uncoupling with 20-µmol/L carbenoxolone. There was a continuous relationship between R j and CV in human and guinea-pig myocardium, pre-and post-carbenoxolone (r 2 =0.946; P<0.01). In guinea-pig left ventricle, left atrium, and right atrium, carbenoxolone increased R j by 28±9%, 26±16%, and 25±14% and slowed CV by 17±3%, 23±8%, and 11±4% respectively (all P<0.05 versus control). As a clinically accessible measure of local microscopic myocardial conduction slowing in vivo in the intact human heart, carbenoxolone prolonged electrogram duration in the right atrium (39.7±4.2 to 42.3±4.3 ms; P=0.01) and right ventricle (48.1±2.5 to 53.3±5.3 ms; P<0.01). Conclusions-There is a continuous relationship between R j and CV that is consistent between cardiac chambers and across species, indicating that naturally occurring variations in cellular coupling can account for variations in CV, and that the concept that there is massive redundancy of coupling is not tenable. (Circ Arrhythm Electrophysiol. 2013;6:1208-1214.)
Background: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of HF. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8 + cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-MI myocardial impairment through presentation of self-antigen from necrotic cardiomyocytes to cytotoxic CD8 + T cells. Methods: We induced type-2 myocardial infarction (MI)-like ischemic injury in the heart by treatment with a single high dose of the beta-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a -depleted mice lacking DC cross-priming function. Results: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a -/- mice deficient in DC cross-priming are protected from long-term immune-mediated myocardial damage and decline of cardiac function, likely due to dampened activation of cytotoxic CD8 + T cells. Conclusions: Activation of cytotoxic CD8 + T cells by cross-priming DC contributes to exacerbation of post-ischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent immune-mediated worsening of post-ischemic HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.