Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to 30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.
Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean (cMEM), hierarchical Bayesian implementations of independent identically distributed sources (IID, minimum norm prior) and spatially coherent sources (COH, spatial smoothness prior). Source maxima (i.e., the vertex with the maximum source amplitude) of IEDs in 14 EEG and 19 MEG studies from 15 patients with focal epilepsy were analyzed. We visually compared their concordance with intracranial EEG (iEEG) based on 17 cortical regions of interest and their spatial dispersion around source maxima. Magnetic source imaging (MSI) maxima from cMEM were most often confirmed by iEEG (cMEM: 14/19, COH: 9/19, IID: 8/19 studies). COH electric source imaging (ESI) maxima co-localized best with iEEG (cMEM: 8/14, COH: 11/14, IID: 10/14 studies). In addition, cMEM was less spatially spread than COH and IID for ESI and MSI (p < 0.001 Bonferroni-corrected post hoc t test). Highest positive predictive values for cortical regions with IEDs in iEEG could be obtained with cMEM for MSI and with COH for ESI. Additional realistic EEG/MEG simulations confirmed our findings. Accurate spatially extended sources, as found in cMEM (ESI and MSI) and COH (ESI) are desirable for source imaging of IEDs because this might influence surgical decision. Our simulations suggest that COH and IID overestimate the spatial extent of the generators compared to cMEM.
wMEM allows non-invasive localization of the SOZ from ictal MEG and EEG. MSI-SOZ performs better than ESI-SOZ. MSI/ESI-SOZ can provide important additional information to MSI/ESI-Spikes during presurgical evaluation. Hum Brain Mapp 37:2528-2546, 2016. © 2016 Wiley Periodicals, Inc.
Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by MEG. The method combines time-frequency representation and an entropic regularization technique in a common framework, assuming that brain activity is sparse in time and space. Spatial sparsity relies on the assumption that brain activity is organized among cortical parcels. Sparsity in time is achieved by transposing the inverse problem in the wavelet representation, for both data and sources. We propose an estimator of the wavelet coefficients of the sources based on the maximum entropy on the mean (MEM) principle. The full dynamics of the sources is obtained from the inverse wavelet transform, and principal component analysis of the reconstructed time courses is applied to extract oscillatory components. This methodology is evaluated using realistic simulations of single-trial signals, combining fast and sudden discharges (spike) along with bursts of oscillating activity. The method is finally illustrated with a clinical application using MEG data acquired on a patient with a right orbitofrontal epilepsy.
Electric Source Imaging (ESI) and Magnetic Source Imaging (MSI) of EEG and MEG signals are widely used to determine the origin of interictal epileptic discharges during the pre-surgical evaluation of patients with epilepsy. Epileptic discharges are detectable on EEG/MEG scalp recordings only when associated with a spatially extended cortical generator of several square centimeters, therefore it is essential to assess the ability of source localization methods to recover such spatial extent. In this study we evaluated two source localization methods that have been developed for localizing spatially extended sources using EEG/MEG data: coherent Maximum Entropy on the Mean (cMEM) and 4th order Extended Source Multiple Signal Classification (4-ExSo-MUSIC). In order to propose a fair comparison of the performances of the two methods in MEG versus EEG, this study considered realistic simulations of simultaneous EEG/MEG acquisitions taking into account an equivalent number of channels in EEG (257 electrodes) and MEG (275 sensors), involving a biophysical computational neural mass model of neuronal discharges and realistically shaped head models. cMEM and 4-ExSo-MUSIC were evaluated for their sensitivity to localize complex patterns of epileptic discharges which includes (a) different locations and spatial extents of multiple synchronous sources, and (b) propagation patterns exhibited by epileptic discharges. Performance of the source localization methods was assessed using a detection accuracy index (Area Under receiver operating characteristic Curve, AUC) and a Spatial Dispersion (SD) metric. Finally, we also presented two examples illustrating the performance of cMEM and 4-ExSo-MUSIC on clinical data recorded using high resolution EEG and MEG. When simulating single sources at different locations, both 4-ExSo-MUSIC and cMEM exhibited excellent performance (median AUC significantly larger than 0.8 for EEG and MEG), whereas, only for EEG, 4-ExSo-MUSIC showed significantly larger AUC values than cMEM. On the other hand, cMEM showed significantly lower SD values than 4-ExSo-MUSIC for both EEG and MEG. When assessing the impact of the source spatial extent, both methods provided consistent and reliable detection accuracy for a wide range of source spatial extents (source sizes ranging from 3 to 20cm for MEG and 3 to 30cm for EEG). For both EEG and MEG, 4-ExSo-MUSIC localized single source of large signal-to-noise ratio better than cMEM. In the presence of two synchronous sources, cMEM was able to distinguish well the two sources (their location and spatial extent), while 4-ExSo-MUSIC only retrieved one of them. cMEM was able to detect the spatio-temporal propagation patterns of two synchronous activities while 4-ExSo-MUSIC favored the strongest source activity. Overall, in the context of localizing sources of epileptic discharges from EEG and MEG data, 4-ExSo-MUSIC and cMEM were found accurately sensitive to the location and spatial extent of the sources, with some complementarities. Therefore, they are both eligible for a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.