The 2011 Great East Japan tsunami revealed the limit of using natural or artificial infrastructures as a single tsunami countermeasure. In recent tsunami mitigation strategy, interest in a hybrid defense system (combination of natural and artificial infrastructures) rather than a single defense structure is growing, and a pilot project has already started in Japan. Clarification of flow structures within the hybrid defense system is necessary for designing an improved mitigation system. In addition, when a hydraulic jump is expected, its position should be restricted to a protected area for the resilience of the hybrid defense system. This study performed flume tests to elucidate the mitigation effect of a hybrid defense system comprising an embankment model (EM), followed by different types of single-layer emergent forest models (SLM) or vertical double-layer forest models (DLM). Different types of hydraulic jumps were observed within the defense system, jump position and their characteristics dominated the energy reduction downstream of SLM or DLM. Experimental results showed that this hybrid defense system reduced the flow energy to 30% and 40% of maximum for SLM and DLM, respectively, compared to only the single EM. Moreover, the position of the hydraulic jump was near the EM in the combination of EM and DLMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.