Light-matter interactions between the metallic and dielectric layers along with the controlling of electromagnetic waves can create a way to develop micro-devices and moderate the functionalities for advanced applications. This study describes a new controlling technique of the plasmatic electron packet based on an electric split-ring resonator (eSRR). All numerical experiments were performed using an advanced CST electromagnetic package. The proposed metamaterial tunneled structure in this study operates using terahertz (THz) frequency spectrum as an efficient digital processing filter. The array combination of the tunneled structure consisted of three individual unit cells. Moreover, the two engineered metallic arms added to the tunneled structure exhibited two peak resonances and one passband frequency region. A large evanescent field was produced to enhance the wave-metal interactions with the presence of a metal-dielectric micro-tunnel. The intensity of the electromagnetic wave-metal interactions was encoded to binary 0 and 1 for information encoding purposes. As a result, the reconfigurable micro-unit cell metamaterial tunneled structure was able to effectively control the electric field and allow electron packets to be digitally encoded for the information processing system.
The development and improvement of the dual-band 802.11ac standard Wi-Fi and wide bandwidth satellite communication devices are currently research subjects that have garnered significant interest. In this paper, double C-shaped two split-ring resonator (SRR) bounded unit cells were developed, which are applicable for S, C, and X band applications, including dual-band Wi-Fi communication devices and satellite communication applications for its effective medium ratio (EMR) of 15.6, which results in a 2.4 GHz resonance frequency and wide bandwidth (S21 < −10 dB) of 1650 MHz at an 11.5 GHz resonance frequency. A copper resonator and the popular substrate material Rogers RT 5880 (thickness of 1.575 mm) were adopted for analyzing the characteristics of this unit cell. The 8×8 mm2 structure was designed and simulated using a commercially available electromagnetic simulator CST (Computer Simulation Technology) Studio Suite 2019, which was utilized at four resonance frequencies: 2.4 GHz, 5.6 GHz, 8.93 GHz, and 11.5 GHz. The electric field, magnetic field, and surface current distribution were examined by modifying the metamaterial unit cell design structure, showing effective results. To confirm the CST simulation results, the newly designed double C-shaped double-negative metamaterial (DNG) was also simulated with the Ansys High-Frequency Structure Simulator (HFSS) and compared with the extracted results. The suggested metamaterial is advised for usage in Wi-Fi and satellite communication applications for superior long-distance communication performance and efficiency with the compactness of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.