Globally, mineral nitrogen (N) losses as nitrate leaching (NL) are a substantial portion of applied fertilizer and cause surface and sub-surface water contamination. To precisely measure NL and its interlink parameters, biochar soil amendment was tested in this study. Three treatments—biochar (BC), without biochar (WB) with 15N urea (300 kg/ha), and control (no fertilization)—were tested in soil-filled lysimeters (circular PVC (Polyvinyl Chloride) tank of 30 cm diameter and 35 cm height) equipped with moisture content sensors and weighing assembly for the consecutive two cropping of Brassica Camprestis Var. Chinensis. The 15N-urea in the first season and the poultry manure in the second season were applied, but the fate of the 15N was examined in leachate, dry matter, and soil. As compared to WB, BC significantly decreased mineral N leaching, including nitrate levels (35%), increased electrical conductivity (68.5%), and water availability (20% inches per foot), while there was a non-significant increase in biomass per plant (2.84%), evapotranspiration (8.33%), dry matter (6.89%), and a decrease in mean leachate volume (7.63%). Moreover, BC accumulated values were higher than WB, as N uptake (38%), water use efficiency (12.24%), maximum fresh weight (11.4%), and soil N retained (185%) after cropping. The soil pH, the bulk density, and the total nitrogen were changed but presented non-significant differences. Therefore, biochar can increase soil N retention and available water to improve water use efficiency and decrease potential N leaching.
The aim of this study is to analyze the variations in the plant-available nitrogen (PAN) concentrations in the soil profile. Different fertilizers were applied for Chinese cabbage plantation (CCP) in the experimental fields of the Shunyi region. The treatments used for the comparative analysis are (i) no fertilizer and plantation (NVP), (ii) no fertilizer with CCP (CTP), (iii) fertilization as urea (URP), and (iv) potassium nitrate (KNP) and chicken manure (CMP) with CCP. It was concluded that the yield was significantly high in URP, CMP, and KNP as compared to CTP. In URP, maximum PAN in soil layers 0–60 cm was recorded during crop production and in 60–100 cm after harvesting as compared to other treatments. Significant variations in soil pH and electrical conductivity (EC) for the soil profile (0–100 cm) from the initial values with respect to time and treatments were observed. CMP showed maximum ammonium in the upper layers of 0–60 cm throughout the season, whereas minimum PAN was observed in NVP but increased in lower layers of 60–100 cm. In general, all fertilizers raised the PAN below the soil 60–100 cm which indicates their potential for nitrate leaching (NL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.