Communication technologies have drastically increased the number of wireless networks. Heterogeneous networks have now become an indispensable fact while designing the new networks and the way the data packet moves from device to device opens new challenges for transmitting the packet speedily, with maximum throughput and by consuming only confined energy. Therefore, the present study intends to provide a shrewd communication link among all IoT devices that becomes part of numerous heterogeneous networks. The scrumptious dataflow strategy (SDS) for IoT devices in the heterogeneous network environment is proposed and it would deal with all link selection and dataflow challenges. The SDS would accomplish the targeted output in five steps: Step 1 determines the utility rate of each heterogeneous link. Step 2 develops a link selection attribute (LSA) that gauges the loads of network features used for the link selection process. Step 3 calculates the scores of all heterogeneous networks. Step 4 takes the LSA table and computes the network preference for different scenarios, such as round trip time (RTTP), network throughput, and energy consumption. Step 5 sets the priority of heterogeneous networks based on the scores of network attributes. Performance of the proposed SDS mechanism with state of the art network protocols, such as high-speed packet access (HSPA), content-centric networking (CCN), and dynamic source routing (DSR), was determined by conducting a simulation with NS2 and, consequently, the SDS exhibited its shrewd performance. During comparative analysis, in terms of round trip time, the SDS proved that it utilized only 16.4 milliseconds to reach IoT device 50 and was first among all other protocols. Similarly, for network throughput, at IoT device 50, the throughputs of the SDS are recorded at 40% while the rest of other protocols were dead. Finally, while computing the energy consumption used to reach IoT device 50, the SDS was functional and possessed more than half of its energy compared to the other protocols. The SDS only utilized 302 joules while the rest of the protocols were about to die as they had consumed all of their energy.
The unavoidable pandemic situation seems uncontrolled over the past two years. In this aggravated situation, it seems crucial to take inescapable measures to deal with such a defiant disease and it is only possible if the actual pandemic propagation ratio is to be acquainted. Therefore, a shrewd pandemic model is being developed that will generate real-time infection statistics on an hourly, weekly, and monthly basis. This shrewd model utilizes the well-known dataset and when this dataset will be applied to determine the status of three types of infection the number of infected people, the time when the pandemic begins, and the time when the pandemic disappears. The time-based results are generated by conducting simulation in python Simpy framework and the generated results are the hallmark of real-time infection spreading ratio it shows that when the extraordinary measures for infection ratio are indispensable and when it becomes plausible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.