[1] Approaches to predictions in ungauged basins have so far mainly focused on a priori parameter estimates from physical watershed characteristics or on the regionalization of model parameters. Recent studies suggest that the regionalization of hydrologic indices (e.g., streamflow characteristics) provides an additional way to extrapolate information about the expected watershed response to ungauged locations for use in continuous watershed modeling. This study contributes a novel multiobjective framework for identifying behavioral parameter ensembles for ungauged basins using suites of regionalized hydrologic indices. The new formulation enables the use of multiobjective optimization algorithms for the identification of model ensembles for predictions in ungauged basins for the first time. Application of the new formulation to 30 watersheds located in England and Wales and comparison of the results with a Monte Carlo approach demonstrate that the new formulation will significantly advance our ability to reduce the uncertainty of predictions in ungauged basins.Citation: Zhang, Z., T. Wagener, P. Reed, and R. Bhushan (2008), Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization, Water Resour. Res., 44, W00B04,
We investigate the potential of integrating desalination to existing reservoir systems to mitigate supply uncertainty. Desalinated seawater and wastewater are relatively reliable but expensive. Water from natural resources like reservoirs is generally cheaper but climate sensitive. We propose combining the operation of a reservoir and seawater and wastewater desalination plants for an overall system that is less vulnerable to scarcity and uncertainty, while constraining total cost. The joint system is modeled as a multiobjective optimization problem with the double objectives of minimizing risk and vulnerability, subject to a minimum limit on resilience. The joint model is applied to two cases, one based on the climate and demands of a location in India and the other of a location in California. The results for the Indian case indicate that it is possible for the joint system to reduce risk and vulnerability to zero given a budget increase of 20-120% under current climate conditions and 30-150% under projected future conditions. For the Californian case, this would require budget increases of 20-80% and 30-140% under current and future conditions, respectively. Further, our analysis shows a two-way interaction between the reservoir and desalination plants where the optimal operation of the former is just as much affected by the latter as the latter by the former. This highlights the importance of an integrated management approach. This study contributes to a greater quantitative understanding of desalination as a redundancy measure for adapting water supply infrastructures for a future of greater scarcity and uncertainty.Of the different alternatives, we focus on the last two, namely desalinated seawater and desalinated wastewater
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.