Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules [1][2][3] . In mice, at least 16 loci are associated with HPS 4-6 , including sandy (sdy ; ref. 7 ). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to α-and β-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells 8 . We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 ), which regulates Correspondence should be addressed to R.T.S (richard.swank@roswellpark.org). 11 These authors contributed equally to this work.Note: Supplementary information is available on the Nature Genetics website. Competing Interests Statement:The authors declare that they have no competing financial interests. We previously showed 7 that the sdy mutant mouse is a valid model for human HPS and localized the gene sdy to mouse chromosome 13. Here we genotyped 20 microsatellite markers in 1,250 progeny of sdy backcrosses to localize sdy to the 2.2-cM interval between D13Mit244 and D13Mit267 (Fig. 1). We identified the sdy interval within a 28-Mb scaffold (Celera Discovery System) containing two known genes, Jmj and Dtnbp1 (Fig. 1b). We used PCR products of D13Mit179 and the Dtnbp1 cDNA as probes to generate a BAC contig covering the sdy interval (Fig. 1b). NIH Public AccessNorthern-blot analysis and sequencing of RT-PCR products of Jmj identified no abnormalities in sdy mutants, but truncated genomic PCR products (Fig. 2a) and mRNA ( Fig. 2b) of Dtnbp1 were apparent in sdy tissues. Sequencing of RT-PCR products showed that exons 6 and 7 (156 bp) of Dtnbp1 were deleted in mutant mice, resulting in the loss of 52 amino acids from position 119-172 of the dysbindin protein ( Supplementary Fig. 1 online). Genomic sequencing showed that this results from a large deletion (38,129 bp) from nucleotide 3,701 of intron 5 to nucleotide 12,377 of intron 7. This deletion was not found in twelve other inbred mouse strains (Fig. 2a), including coisogenic DBA/2J, indicating that it was not a strain-specific polymorphism. This in-frame deletion creates a 1.5-kb mutant dysbindin transcript ( Fig. 2b) and abolishes expression of the 51-kDa dysbindin 8 protein in sdy/sdy mice ( Fig. 2c). Expression of dysbindin is restored in sdy/sdy transgenic mice containing BAC54F9 (Fig. 2c). Platelet serotonin levels of six of these transgenics were normal (>1.12 μg per 10 9 platelets), whereas all five sdy/sdy litter-mates without BAC54F9 had platelet serotonin levels of <0.06 μg per 10 9 platelets. sdy/sdy progeny containing the BAC transgene had dar...
Antigen-based tests for SARS-CoV-2, the virus that causes coronavirus disease 2019 , are inexpensive and can return results within 15 minutes (1). Antigen tests have received Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for use in asymptomatic and symptomatic persons within the first 5-12 days after symptom onset (2). These tests have been used at U.S. colleges and universities and other congregate settings (e.g., nursing homes and correctional and detention facilities), where serial testing of asymptomatic persons might facilitate early case identification (3-5). However, test performance data from symptomatic and asymptomatic persons are limited. This investigation evaluated performance of the Sofia SARS Antigen Fluorescent Immunoassay (FIA) (Quidel Corporation) compared with real-time reverse transcription-polymerase chain reaction (RT-PCR) for SARS-CoV-2 detection among asymptomatic and symptomatic persons at two universities in Wisconsin. During September 28-October 9, a total of 1,098 paired nasal swabs were tested using the Sofia SARS Antigen FIA and real-time RT-PCR. Virus culture was attempted on all antigenpositive or real-time RT-PCR-positive specimens. Among 871 (79%) paired swabs from asymptomatic participants, the antigen test sensitivity was 41.2%, specificity was 98.4%, and in this population the estimated positive predictive value (PPV) was 33.3%, and negative predictive value (NPV) was 98.8%. Antigen test performance was improved among 227 (21%) paired swabs from participants who reported one or more symptoms at specimen collection (sensitivity = 80.0%; specificity = 98.9%; PPV = 94.1%; NPV = 95.9%). Virus was isolated from 34 (46.6%) of 73 antigen-positive or real-time RT-PCR-positive nasal swab specimens, including two of 18 that were antigen-negative and real-time RT-PCR-positive (false-negatives). The advantages of antigen tests such as low cost and rapid turnaround might allow for rapid identification of infectious persons. However, these advantages need to be
In the mouse, at least 16 genes regulate vesicle trafficking to specialized lysosome-related organelles, including platelet dense granules and melanosomes. Fourteen of these genes have been identified by positional cloning. All 16 mouse mutants are models for the genetically heterogeneous human disease, Hermansky-Pudlak Syndrome (HPS). Five HPS genes encode known vesicle trafficking proteins. Nine genes are novel, are found only in higher eukaryotes and encode members of three protein complexes termed BLOCs (Biogenesis of Lysosome-related Organelles Complexes). Mutations in murine HPS genes, which encode protein co-members of BLOCs, produce essentially identical phenotypes. In addition to their well-known effects on pigmentation, platelet function and lysosome secretion, HPS genes control a wide range of physiological processes including immune recognition, neuronal functions and lung surfactant trafficking. Studies of the molecular functions of HPS proteins will reveal important details of vesicle trafficking and may lead to therapies for HPS.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.