Presently, agriculture worldwide is facing the major challenge of feeding the increasing population sustainably. The conventional practices have not only failed to meet the projected needs, but also led to tremendous environmental consequences.Hence, to ensure a food-secure and environmentally sound future, the major thrust is on sustainable alternatives. Due to challenges associated with conventional means of application of biocontrol agents in the management of biotic stresses in agroecosystems, significant transformations in this context are needed. The crucial role played by soil microbiome in efficiently and sustainably managing the agricultural production has unfolded a newer approach of rhizosphere engineering that shows immense promise in mitigating biotic stresses in an eco-friendly manner. The strategy of generating synthetic microbial communities (SynComs), by integrating omics approaches with traditional techniques of enumeration and in-depth analysis of plant-microbe interactions, is encouraging. The review discusses the significance of the rhizospheric microbiome in plant's fitness, and its manipulation for enhancing plant attributes. The focus of the review is to critically analyse the potential tools for the design and utilization of SynComs as a sustainable approach for rhizosphere engineering to ameliorate biotic stresses in plants. Furthermore, based on the synthesis of reports in the area, we have put forth possible solutions to some of the critical issues that impair the large-scale application of SynComs in agriculture.
Abiotic stresses detrimentally affect both plant and soil health, threatening food security in an ever-increasing world population. Sustainable agriculture is necessary to augment crop yield with simultaneous management of stresses. Limitations of conventional bioinoculants have shifted the focus to more effective alternatives. With the realization of the potential of rhizospheric microbiome engineering in enhancing plant's fitness under stress, efforts have accelerated in this direction. Though still in its infancy, microbiome-based engineering has gained popularity because of its advantages over the microbe-based approach. This review briefly presents major abiotic stresses afflicting arable land, followed by an introduction to the conventional approach of microbe-based enhancement of plant attributes and stress mitigation with its inherent limitations. It then focuses on the significance of the rhizospheric microbiome and possibilities of harnessing its potential by its strategic engineering for stress management. Further, success stories related to two major approaches of microbiome engineering (generation of synthetic microbial community/consortium, and host-mediated artificial selection) pertaining to stress management have been critically presented. Together with bringing forth the challenges associated with the wide application of rhizospheric microbiome engineering in agriculture, the review proposes the adoption of a combinational scheme for the same, bringing together ecological and reductionist approaches for improvised sustainable agricultural practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.