The utilization of coconut fibers as reinforcement in polymer composites has been increase significantly due to their low cost and high specification of mechanical properties. Whereas kevlar fibers has widely used as the core material in flexible body armors due to its great mechanical properties, such as high strength, light weight, good chemical resistance and thermal stability. The research work is concerned with the evaluation of high speed impact and flexural test of hybrid textile reinforced epoxy composites. Samples were prepared from coir yarn, kevlar yarn, interlaced of coir and kevlar yarn with different warp/weft orientation and pure epoxy as control specimen. The woven samples were produced using handloom and the composites specimens were prepared using hand lay-up technique. From the results obtained, it was found that woven kevlar composites samples displayed the highest impact properties while it exhibits the lowest flexural properties. Results also showed that the composite plate for woven coir yarn (warp) and kevlar yarn (weft) has the flexural strength and impact strength of 17 MPa and 67 kJ/m², which presented as the nearest properties to woven Kevlar composite respectively. These results indicate that coir as a natural fiber can be used as a potential reinforcing material for high impact resistance such as body armors in order to reduce the usage of synthetic materials whilst utilizing the natural resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.