Centrioles are vital cellular structures that form centrosomes and cilia. The formation and function of cilia depends on a set of centriole’s distal appendages. In this study, we use correlative super resolution and electron microscopy to precisely determine where distal appendage proteins localize in relation to the centriole microtubules and appendage electron densities. Here we characterize a novel distal appendage protein ANKRD26 and detail, in high resolution, the initial steps of distal appendage assembly. We further show that distal appendages undergo a dramatic ultra-structural reorganization before mitosis, during which they temporarily lose outer components, while inner components maintain a nine-fold organization. Finally, using electron tomography we reveal that mammalian distal appendages associate with two centriole microtubule triplets via an elaborate filamentous base and that they appear as almost radial finger-like protrusions. Our findings challenge the traditional portrayal of mammalian distal appendage as a pinwheel-like structure that is maintained throughout mitosis.
SummaryCentrioles are vital cellular structures that organise centrosomes and cilia. Due to their subresolutional size, centriole ultrastructural features have been traditionally analysed by electron microscopy. Here we present an adaptation of magnified analysis of the proteome expansion microscopy method, to be used for a robust analysis of centriole number, duplication status, length, structural abnormalities and ciliation by conventional optical microscopes. The method allows the analysis of centriole's structural features from large populations of adherent and nonadherent cells and multiciliated cultures. We validate the method using EM and superresolution microscopy and show that it can be used as an affordable and reliable alternative to electron microscopy in the analysis of centrioles and cilia in various cell cultures.Lay DescriptionCentrioles are microtubule‐based structures organised as ninefold symmetrical cylinders which are, in human cells, ∼500 nm long and ∼230 nm wide. Centrioles assemble dozens of proteins around them forming centrosomes, which nucleate microtubules and organise spindle poles in mitosis. Centrioles, in addition, assemble cilia and flagella, two critically important organelles for signalling and motility. Due to centriole small size, electron microscopy has been a major imaging technique for the analysis of their ultrastructural features. However, being technically demanding, electron microscopy it is not easily available to the researchers and it is rarely used to collect large datasets. Expansion microscopy is an emerging approach in which biological specimens are embedded in a swellable polymer and isotopically expanded several fold. Physical separation of cellular structures allows the analysis of, otherwise unresolvable, structures by conventional optical microscopes. We present an adaptation of expansion microscopy approach, specifically developed for a robust analysis of centrioles and cilia. Our protocol can be used for the analysis of centriole number, duplication status, length, localisation of various centrosomal components and ciliation from large populations of cultured adherent and nonadherent cells and multiciliated cultures. We validate the method against electron microscopy and superresolution microscopy and demonstrate that it can be used as an accessible and reliable alternative to electron microscopy.
Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.
Multiciliated cells (MCC) are specialized epithelia that contain hundreds of motile cilia used to propel fluid over the surface of the cell. To template these cilia, each MCC produces hundreds of centrioles by a process termed centriole amplification. Airway progenitor cells initially contain two parental centrioles that nucleate multiple centrioles at once, and structures called deuterosomes that assemble the vast majority of centrioles during amplification. Remarkably, how each cell regulates the precise number of its centrioles and cilia remains unknown. Here, we investigate mechanisms that establish centriole number in MCC using an ex vivo airway culture model. We show that ablation of parental centrioles, via inhibition of Plk4 kinase, does not perturb deuterosome formation and centriole amplification, nor alter the total complement of centrioles per cell. Airway MCC vary in size and surface area, and exhibit a broad range in centriole number. Quantification of centriole abundance in vitro and in vivo identified a direct relationship between cell-surface area and centriole number. By manipulating cell size and shape, we discovered that centriole number scales with increasing surface area. Collectively, our results demonstrate that parental centrioles and Plk4 are dispensable for deuterosome formation, centriole amplification, and establishment of centriole number. Instead, a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.
The two centrioles of the centrosome in quiescent cells are inherently asymmetric structures that differ in age, morphology and function. How these asymmetric properties are established and maintained during quiescence remains unknown. Here, we show that a daughter centriole-associated ciliopathy protein, Cep120, plays a critical inhibitory role at daughter centrioles. Depletion of Cep120 in quiescent mouse and human cells causes accumulation of pericentriolar material (PCM) components including pericentrin, Cdk5Rap2, ninein and Cep170. The elevated PCM levels result in increased microtubule-nucleation activity at the centrosome. Consequently, loss of Cep120 leads to aberrant dynein-dependent trafficking of centrosomal proteins, dispersal of centriolar satellites, and defective ciliary assembly and signaling. Our results indicate that Cep120 helps to maintain centrosome homeostasis by inhibiting untimely maturation of the daughter centriole, and defines a potentially new molecular defect underlying the pathogenesis of ciliopathies such as Jeune Asphyxiating Thoracic Dystrophy and Joubert syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.