In the era of nanotechnology, nanoparticles (NPs) of metals and metal oxides/chalcogenides are widely been used in medical applications where antibiotic-resistant microorganisms become a serious threat to the human health. Cobalt ferrite (CoFe 2 O 4) NPs, synthesized by a simple and cost-effective sol-gel auto-combustion method are envisaged for in vitro antimicrobial activities against Gram-positive bacteria (Bacillus subtilis; Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli; Pseudomonas aeruginosa). The structure, morphology, elemental analyses and surface area of CoFe 2 O 4 NPs are initially screened. The antimicrobial efficiency of CoFe 2 O 4 NPs is found to be optimum against the Gram-negative bacteria Escherichia coli (15 mm). In addition, membrane leakage assays performed to evaluate the intracellular cytoplasmic leakage with CoFe 2 O 4 NPs demonstrate the ability to destroy the bacterial membrane integrity, confirming their antimicrobial potential.
Total population of cellulose degrading bacteria was studied in a landfill ecosystem as a part of microbial diversity study. Samples were obtained from 3 and 5 feet depth of a local landfill being operated for past 10 years. Among many isolates, 22 bacterial strains were selected based on their capability to decompose carboxymethyl cellulose (CMC). These isolates were cultivated on agar medium with CMC as the carbon source. All isolates were Gram positive, endospore forming and alkalophilic bacteria with optimum growth pH 9-10. They were grouped based on the phenotypic and chemotaxonomic characters and representative strains of different groups along with high carboxymethyl cellulase (CMCase) producing strains were included for further characterization. Analysis of 16S rRNA gene indicated that these strains belong to different species of the genus Bacillus. Maximum CMCase activity of 4.8 U/ml at 50°C was obtained by strain LFC15. Results in the present study indicated the potential of waste land ecosystems such as landfill are potential source for isolation of industrially important microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.