The first checkpoint in T cell development, beta selection, has remained incompletely characterized for lack of specific surface markers. We show that CD27 is upregulated in DN3 thymocytes initiating beta selection, concomitant with intracellular TCR-beta expression. Clonal analysis determined that CD27high DN3 cells generate CD4+CD8+ progeny with more than 90% efficiency, faster and more efficiently than the CD27low majority. CD27 upregulation also occurs in gammadelta-selected DN3 thymocytes in TCR-beta-/- mice and in IL2-GFP transgenic reporter mice where GFP marks the earliest emerging TCR-gammadelta cells from DN3 thymocytes. With CD27 to distinguish pre- and postselection DN3 cells, a detailed gene expression analysis defined regulatory changes associated with checkpoint arrest, with beta selection, and with gammadelta selection. gammadelta selection induces higher CD5, Egr, and Runx3 expression as compared to beta selection, but it triggers less proliferation. Our results also reveal differences in Notch/Delta dependence at the earliest stages of divergence between developing alphabeta and gammadelta T-lineage cells.
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s).
The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed.
The primary goal of the study was to estimate the phylogeny of Boute/oua and relatives (Gramineae: Chloridoideae) employing cladistic parsimony analysis of nuclear ribosomal intern al transcribed spacer region (ITS I + 5. SS + ITS2) DNA sequences . In cluded were Aegopogon (2 of 4 species), Boute/oua (34 of 42) , Buchloe (I of I), Buch/omimus (I of I), Cathestecum (2 of 4), Cyclostachya (I of I), Griffithsoch/oa ( I of I), Hilaria (I of 7), Opizia (2 of 2), Pentarrhaphis (2 of 3), Pleuraphis (2 of 3) , Pringleochloa ( I of I), Soderstromia (I of I), and fi ve outgroup genera/species for a total of IS genera, 56 species, and ten varieties . In all , the ITS regio n of 72 plants was seque nced and analyzed utilizing PAUP. Aegopogon, the Hilaria-Pleuraphis clade, and Tragus (an outgro up represe ntative) formed a tetratomy with a clade containing the remaining ingroup taxa. Neither Bouteloua no r its two subgenera, Bouteloua and Chondrosium, were found to be monophyletic. B. eriostachya, B. hirsuta, and B. pectinata (subg. Chondrosium). Bouteloua j uncea, which has been included in the B. curtipendula complex, was not a member of that clade. No new circumscriptions were proposed, although recognition of Boute/oua in the broad sense, with Chondrosium reduced to synonymy, was advocated. The findings suggested homopl asy in morphol ogical, anato mical, and breeding syste m traits.
The evolutionary origins of lymphocytes can be traced by phylogenetic comparisons of key features. Homologs of rearranging TCR and Ig (B cell receptor) genes are present in jawed vertebrates, but have not been identified in other animal groups. In contrast, most of the transcription factors that are essential for the development of mammalian T and B lymphocytes belong to multigene families that are represented by members in the majority of the metazoans, providing a potential bridge to prevertebrate ancestral roles. This work investigates the structure and regulation of homologs of specific transcription factors known to regulate mammalian T and B cell development in a representative of the earliest diverging jawed vertebrates, the clearnose skate (Raja eglanteria). Skate orthologs of mammalian GATA-3, GATA-1, EBF-1, Pax-5, Pax-6, Runx2, and Runx3 have been characterized. GATA-3, Pax-5, Runx3, EBF-1, Spi-C, and most members of the Ikaros family are shown throughout ontogeny to be 1) coregulated with TCR or Ig expression, and 2) coexpressed with each other in combinations that for the most part correspond to known mouse T and B cell patterns, supporting conservation of function. These results indicate that multiple components of the gene regulatory networks that operate in mammalian T cell and B cell development were present in the common ancestor of the mammals and the cartilaginous fish. However, certain factors relevant to the B lineage differ in their tissue-specific expression patterns from their mouse counterparts, suggesting expanded or divergent B lineage characteristics or tissue specificity in these animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.