Objective. The etiology and pathogenesis of human inflammatory myopathies remain unclear. Findings of several studies suggest that the degree of inflammation does not correlate consistently with the severity of clinical disease or of structural changes in the muscle fibers, indicating that nonimmune pathways may contribute to the pathogenesis of myositis. This study was undertaken to investigate these pathways in myositis patients and in a class I major histocompatibility complex (MHC)-transgenic mouse model of myositis.Methods. We examined muscle tissue from human myositis patients and from class I MHCtransgenic mice for nonimmune pathways, using biochemical, immunohistochemical, and gene expression profiling assays. Conclusion. These results indicate that the ER stress response may be a major nonimmune mechanism responsible for skeletal muscle damage and dysfunction in autoimmune myositis. Strategies to interfere with this pathway may have therapeutic value in patients with this disease.
Results
Our data show stage-specific remodeling of human dystrophin-deficient muscle, with inflammatory pathways predominating in the presymptomatic stages and acute activation of TGFbeta and failure of metabolic pathways later in the disease.
The availability of animal models for Duchenne muscular dystrophy has led to extensive preclinical research on potential therapeutics. Few studies have focused on reliability and sensitivity of endpoints for mdx mouse drug trials. Therefore, we sought to compare a wide variety of reported and novel endpoint measures in exercised mdx and normal control mice at 10, 20, and 40 weeks of age. Statistical analysis as well as power calculations for expected effect sizes in mdx preclinical drug trials across different ages showed that body weight, normalized grip strength, horizontal activity, rest time, cardiac function measurements, blood pressure, total central/peripheral nuclei per fiber, and serum creatine kinase are the most effective measurements for detecting drug-induced changes. These data provide an experimental basis upon which standardization of preclinical drug testing can be developed.
A deficiency of the dysferlin protein results in limb girdle muscular dystrophy type 2B and Miyoshi myopathy, with resulting plasma membrane abnormalities in myofibers. Many patients show muscle inflammation, but the molecular mechanisms that initiate and perpetuate this inflammation are not well understood. We previously showed abnormal activation of macrophages and hypothesized that activation of the inflammasome pathway may play a role in disease progression. To test this, we studied the inflammasome molecular platform in dysferlin-deficient human and mouse muscle. Consistent with our model, components of the NACHT, LRR and PYD-containing proteins (NALP)-3 inflammasome pathway were specifically up-regulated and activated in dysferlin-deficient but not in dystrophin-deficient and normal muscle. We demonstrate for the first time that normal primary skeletal muscle cells are capable of secreting IL-1beta in response to combined treatment with lipopolysaccharide and the P2X7 receptor agonist, benzylated ATP, suggesting that not only immune cells but also muscle cells can actively participate in inflammasome formation. In addition, we show that dysferlin-deficient primary muscle cells express toll-like receptors (TLRs; TLR-2 and TLR-4) and can efficiently produce IL-1beta in response to lipopolysaccharide and benzylated ATP. These data indicate that skeletal muscle is an active contributor of IL-1beta and strategies that interfere with this pathway may be therapeutically useful for patients with limb girdle muscular dystrophy type 2B.
On September 4, 2014, the FDA approved pembrolizumab (KEYTRUDA; Merck Sharp & Dohme Corp.) with a recommended dose of 2 mg/kg every 3 weeks by intravenous infusion for the treatment of patients with unresectable or metastatic melanoma who have progressed following treatment with ipilimumab and, if BRAF V600 mutation positive, a BRAF inhibitor. Approval was based on demonstration of objective tumor responses with prolonged response durations in 89 patients enrolled in a randomized, multicenter, open-label, dose-finding, and activity-estimating phase 1 trial. The overall response rate (ORR) by blinded independent central review per RECIST v1.1 was 24% (95% confidence interval, 15-34); with 6 months of follow-up, 86% of responses were ongoing. The most common (≥20%) adverse reactions were fatigue, cough, nausea, pruritus, rash, decreased appetite, constipation, arthralgia, and diarrhea. Immune-mediated adverse reactions included pneumonitis, colitis, hepatitis, hypophysitis, and thyroid disorders. The benefits of the observed ORR with prolonged duration of responses outweighed the risks of immune-mediated adverse reactions in this life-threatening disease and represented an improvement over available therapy. Important regulatory issues in this application were role of durability of response in the evaluation of ORR for accelerated approval, reliance on data from a first-in-human trial, and strategies for dose selection. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.