Hadoop on datacentre is a popular analytical platform for enterprises. Cloud vendors host Hadoop clusters on the datacentre to provide high performance analytical computing facilities to its customers, who demand a parallel programming model to deal with huge data. Effective cost/time management and ingenious resource consumption among the concurrent users, must be the primary concern without which the key aspiration behind high performance cloud computing would suffer. Workflows portray such high performance applications in terms of individual jobs and dependencies between them. Workflows can be scheduled on virtual machines (VMs) in datacentre to make best possible use of resources. In the authors' earlier work, a mechanism to pack and execute the customer jobs as workflows on Hadoop platform was proposed which minimises the VM cost and also executes the workflow jobs within deadline. In this work, the authors try to optimise certain other parameters such as load on cloud, response time for workflows, resource usage effectiveness by applying soft computing methods. Stochastic hill climbing (SCH) is a soft computing approach used to solve many optimisation problems. In this study, they have employed the SHC approach to schedule workflow jobs to VMs and thereby optimise the above mentioned multiple parameters in cloud datacentre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.