In this work, we report the development of a new physics-based analytical model for current and charge characteristics of Double Channel (DC) Gallium Nitride High Electron Mobility Transistors (GaN-HEMTs). The model has at its core the self-consistent calculation of the charge densities, for both upper and lower channels, obtained from a solution of the Schrödinger and Poisson equations. Fermi-Dirac (FD) distribution together with 2D density of states is used for mobile carrier statistics in both the channels. Furthermore, drift-diffusion transport is used to compute the channel current using charge densities at channel extremities. Finally, the model is validated against TCAD simulation and experimental data for a DC-GaN-HEMT. The model, by virtue of its fully physics-based nature, precisely captures the charge screening effect in the lower channel without invoking any empirical clamping functions, unlike prior models, and also possesses the feature of being geometrically scalable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.