A method for non-destructive characterization of plastic deformation in bulk materials is presented. The method is based on X-ray absorption microtomography investigations using X-rays from a synchrotron source. The method can be applied to materials that contain marker particles, which have an atomic number significantly different from that of the matrix material. Data were acquired at the dedicated microtomography instrument at beamline BW2 at HASYLAB / DESY, for a cylindrical aluminium sample containing W particles with an average particle diameter of 7 µm. The minimum detectable size of the maker particles is 1-2 µm with the present spatial resolution at HASYLAB. The position (x,y,z) of all the detected marker particles within 1 mm 3 was determined as function of strain. The sample was deformed in stepwise compression along the axis of the cylinder. A tomographic scan was performed after each deformation step. After a series of image analysis steps to identify the centre of mass of individual particles and alignment of the successive tomographic reconstructions, the displacements of individual particles could be tracked as a function of external strain. The particle displacements are then used to identify local displacement gradient components, from which the local 3D plastic strain tensor can be determined. This allows us to map the strain components as a function of location inside a deforming metallic solid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.