The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O 2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O 2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O 2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O 2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant -microbe interactions.
Calanus hyperboreus is a key species in the Arctic regions because of its abundance and role in the Arctic food web. Exploitation of the off shore oil reserves along Western Greenland is expected in the near future, and it is important to evaluate the acute and chronic effects of oil emissions to the ecosystem. In this study C. hyperboreus females were exposed to concentrations of 0, 0.1, 1, 10 and 100 nM pyrene and saturated concentrations measured to ~300 nM. Daily quantification of egg and faecal pellet production showed significant decreases in the pellet production, while the egg production was unaffected. The hatching success was also unaffected, although the total reproductive output was reduced with increased pyrene concentrations. Accumulation of pyrene in the copepods was higher in feeding than starving females and only trace amounts of the phase I metabolite 1-hydroxypyrene, were found. Lowered reproductive output, reduced grazing, and reduced ability to metabolize pyrene suggest that oil contamination may constitute a risk to C. hyperboreus recruitment, energy transfer in the food web and transfer of pyrene to higher trophic levels.
Research on the fate and effects of herding agents used to contain and thicken oil slicks for in situ burning in Arctic waters continues under the auspices of the International Association of Oil and Gas Producers Arctic Oil Spill Response Technology -Joint Industry Program (JIP). In 2014/2015 laboratory studies were conducted on the fate and effects of herders. The purpose of the studies was to improve the knowledge base used to evaluate the environmental risk of using herders in connection with in situ burning for oil spill response in Arctic seas. Two herding agents were studied (OP 40 and ThickSlick 6535).Laboratory-scale herding and burning experiments were carried out for investigating the physical fate of the two herders during combustion of Alaska North Slope and Grane crude oils (fresh and emulsified). The results showed that after burning, the herder was mainly found on the water surface, and only small concentrations of herders were found in the water column (0.2-22.8 mg/L).The inherent properties of herders in relation to toxicity and bioaccumulation on the high Arctic copepods (Calanus hyperboreus), as well as the biodegradability of herders were studied under arctic conditions. The results indicated that a distinct mortality was seen at the highest test 255 2017 INTERNATIONAL OIL SPILL CONFERENCE 2 concentrations of the herders. However, the concentration of herders required to produce acute toxicity in the laboratory was approximately three orders of magnitude higher than the concentrations measured in the water column when herders were used to conduct an in situ burn in the laboratory. OP-40 might bio-accumulate whereas TS6535 might not. TS6535 was mostly degraded within 7 days, whereas the degradation of OP-40 was insignificant over 28 days.Since herders are mainly considered as a surface active chemical compound, the potential impacts of herders on Arctic seabird feathers (from legally hunted Thick-Billed Murre and Common Eider) were investigated. Different dosages of herders were tested; high dosages that might be present just after the application of the herder and low dosages (approximately monolayers) likely to occur for a significant time and distance from the operations. Low dosages corresponding to approximately monolayers of OP-40 and TS6535 did not cause feathers to sink; however they did absorb more water than the controls. The high dosages caused measured damages to the feather microstructure.Finally, laboratory burning experiments were carried out to determine if there was a difference in the composition of smoke plumes from mechanically contained burns versus herded oil burns. Herder was not measured in the smoke plumes, and there were no other noticeable differences in combustion between the two methods of containment (herder vs. metal ring).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.