A field experiment during autumn, winter and spring was performed in a small stream on the west coast of Sweden, aiming to examine the direct and indirect consequences of density-dependent intercohort competition in brown trout Salmo trutta. Individual growth rate, recapture rate and site fidelity were used as response variables in the young-of-the-year (YOY) age class, experiencing two different treatments: presence or absence of yearlings and over-yearlings (age > or = 1+ year individuals). YOY individuals in stream sections with reduced density of age > or = 1+ year individuals grew significantly faster than individuals experiencing natural cohort structure. In the latter, growth rate was negatively correlated with density and biomass of age > or = 1+ year individuals, which may induce indirect effects on year-class strength through, for example, reduced fecundity and survival. Movement of YOY individuals and turnover rate (i.e. proportion of untagged individuals) were used to demonstrate potential effects of intercohort competition on site fidelity. While YOY movement was remarkably restricted (83% recaptured within 50 m from the release points), turnover rate was higher in sections with reduced density of age > or = 1+ year individuals, suggesting that reduced density of age > or = 1+ year individuals may have released favourable microhabitats.
Competition during the juvenile phase is a key process for regulating density in organisms with high fecundity. Juvenile density-dependent bottlenecks may become even more pronounced if several cohorts compete, but this has received relatively limited attention in previous literature. We performed a manipulation experiment in seven coastal streams to investigate the presence of inter-cohort competition, using habitat selection, body-size and density of newly emerged (age-0) brown trout (Salmo trutta) as response variables. The trout population (age ≥ 1 fish) was estimated using electro-fishing prior to the emergence of fry (April-May) and was either removed (manipulated sections) or maintained (control sections). Age-0 habitat selection was examined in June while density and body-size was evaluated in October (end of the growth season). We found that age-0 trout selected habitats that were located further from riffles (nursery habitats) in the absence of age ≥ 1 trout, suggesting a niche overlap between cohorts in the habitat dimension and, hence, that both inter-cohort competitive interactions and ontogenetic preference may influence habitat utilisation in the wild. Furthermore, we also found age-0 body-size to be significantly larger in manipulated sections and negatively related to its own density. We argue that competition from older cohorts influence the availability of age-0 feeding territories at the critical phase of emergence with secondary negative effects on age-0 growth. These results not only have implications for understanding the mechanisms of density dependence but can also provide valuable knowledge to the management of salmonid populations and their habitats in the wild.
While the prevalence of density-dependence is well-established in population ecology, few field studies have investigated its underlying mechanisms and their relative population-level importance. Here, we address these issues, and more specifically, how differences in body-size influence population regulation. For this purpose, two experiments were performed in a small coastal stream on the Swedish west coast, using juvenile brown trout (Salmo trutta) as a study species. We manipulated densities of large and small individuals, and observed effects on survival, migration, condition and individual growth rate in a target group of intermediate-sized individuals. The generality of the response was investigated by reducing population densities below and increasing above the natural levels (removing and adding large and small individuals). Reducing the density (relaxing the intensity of competition) had no influence on the response variables, suggesting that stream productivity was not a limiting factor at natural population density. Addition of large individuals resulted in a negative density-dependent response, while no effect was detected when adding small individuals or when maintaining the natural population structure. We found that the density-dependent response was revealed as reduced growth rate rather than increased mortality and movement, an effect that may arise from exclusion to suboptimal habitats or increased stress levels among inferior individuals. Our findings confirm the notion of interference competition as the primary mode of competition in juvenile salmonids, and also show that the feedback-mechanisms of density-dependence are primarily acting when increasing densities above their natural levels.
Density-dependence is a major ecological mechanism that is known to limit individual growth. To examine if compensatory growth (unusually rapid growth following a period of imposed slow growth) in nature is density-dependent, one-year-old brown trout (Salmo trutta L.) were first starved in the laboratory, and then released back into their natural stream, either at natural or at experimentally increased population density. The experimental trout were captured three times over a one-year period. We found no differences in growth, within the first month after release (May-June), between the starved fish and the control group (i.e. no evidence of compensation). During the summer however (July-September), the starved fish grew more than the control group (i.e. compensation), and the starved fish released into the stream at a higher density, grew less than those released at a natural density, both in terms of weight and length (i.e. density-dependent compensation). Over the winter (October-April), there were no effects of either starvation or density on weight and length growth. After the winter, starved fish released at either density had caught up with control fish in body size, but recapture rates (proxy for survival) did not indicate any costs of compensation. Our results suggest that compensatory growth in nature can be density-dependent. Thus, this is the first study to demonstrate the presence of ecological restrictions on the compensatory growth response in free-ranging animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.