Learning to navigate in 3D environments from raw sensory input is an important step towards bridging the gap between human players and artificial intelligence in digital games. Recent advances in deep reinforcement learning have seen success in teaching agents to play Atari 2600 games from raw pixel information where the environment is always fully observable by the agent. This is not true for first-person 3D navigation tasks. Instead, the agent is limited by its field of view which limits its ability to make optimal decisions in the environment. This paper explores using a Deep Recurrent QNetwork implementation with a long short-term memory layer for dealing with such tasks by allowing an agent to process recent frames and gain a memory of the environment. An agent was trained in a 3D first-person labyrinth-like environment for 2 million frames. Informal observations indicate that the trained agent navigated in the right direction but was unable to find the target of the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.