Summary Site‐specific weed control technologies are defined as machinery or equipment embedded with technologies that detect weeds growing in a crop and, taking into account predefined factors such as economics, take action to maximise the chances of successfully controlling them. In this study, we describe the basic parts of site‐specific weed control technologies, comprising weed sensing systems, weed management models and precision weed control implements. A review of state‐of‐the‐art technologies shows that several weed sensing systems and precision implements have been developed over the last two decades, although barriers prevent their breakthrough. Most important among these is the lack of a truly robust weed recognition method, owing to mutual shading among plants and limitations in the capacity of highly accurate spraying and weeding apparatus. Another barrier is the lack of knowledge about the economic and environmental potential for increasing the resolution of weed control. The integration of site‐specific information on weed distribution, weed species composition and density and the effect on crop yield, is decisive for successful site‐specific weed management.
Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit).
In agricultural mowing operations, thousands of animals are injured or killed each year, due to the increased working widths and speeds of agricultural machinery. Detection and recognition of wildlife within the agricultural fields is important to reduce wildlife mortality and, thereby, promote wildlife-friendly farming. The work presented in this paper contributes to the automated detection and classification of animals in thermal imaging. The methods and results are based on top-view images taken manually from a lift to motivate work towards unmanned aerial vehicle-based detection and recognition. Hot objects are detected based on a threshold dynamically adjusted to each frame. For the classification of animals, we propose a novel thermal feature extraction algorithm. For each detected object, a thermal signature is calculated using morphological operations. The thermal signature describes heat characteristics of objects and is partly invariant to translation, rotation, scale and posture. The discrete cosine transform (DCT) is used to parameterize the thermal signature and, thereby, calculate a feature vector, which is used for subsequent classification. Using a k-nearest-neighbor (kNN) classifier, animals are discriminated from non-animals with a balanced classification accuracy of 84.7% in an altitude range of 3–10 m and an accuracy of 75.2% for an altitude range of 10–20 m. To incorporate temporal information in the classification, a tracking algorithm is proposed. Using temporal information improves the balanced classification accuracy to 93.3% in an altitude range 3–10 of meters and 77.7% in an altitude range of 10–20 m
A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kgNha. The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.