Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. However, such neutrinos seem incompatible with cosmology because they have too large an impact on cosmic structure formation. Here we show that new interactions in the sterile neutrino sector can prevent their production in the early Universe and reconcile short baseline oscillation experiments with cosmology.
From a theoretical point of view, there is a strong motivation to consider an MeV-scale reheating temperature induced by long-lived massive particles with masses around the weak scale, decaying only through gravitational interaction. In this study, we investigate lower limits on the reheating temperature imposed by big-bang nucleosynthesis assuming both radiative and hadronic decays of such massive particles. For the first time, effects of neutrino self-interactions and oscillations are taken into account in the neutrino thermalization calculations. By requiring consistency between theoretical and observational values of light element abundances, we find that the reheating temperature should conservatively be T RH 1.8 MeV in the case of the 100% radiative decay, and T RH 4 − 5 MeV in the case of the 100% hadronic decays for particle masses in the range of 10 GeV to 100 TeV.
Neutrino flavor evolution in core-collapse supernovae, neutron-star mergers, or the early universe is dominated by neutrino-neutrino refraction, often spawning "self-induced flavor conversion", i.e., shuffling of flavor among momentum modes. This effect is driven by collective run-away modes of the coupled "flavor oscillators" and can spontaneously break the initial symmetries such as axial symmetry, homogeneity, isotropy, and even stationarity. Moreover, the growth rates of unstable modes can be of the order of the neutrino-neutrino interaction energy instead of the much smaller vacuum oscillation frequency: self-induced flavor conversion does not always require neutrino masses. We illustrate these newly found phenomena in terms of simple toy models. What happens in realistic astrophysical settings is up to speculation at present
Neutrino-neutrino refraction in dense media can cause self-induced flavor conversion triggered by collective run-away modes of the interacting flavor oscillators. The growth rates were usually found to be of order a typical vacuum oscillation frequency ∆m 2 /2E. However, even in the simple case of a ν e beam interacting with an opposite-movingν e beam, and allowing for spatial inhomogeneities, the growth rate of the fastest-growing Fourier mode is of order µ = √ 2G F n ν , a typical ν-ν interaction energy. This growth rate is much larger than the vacuum oscillation frequency and gives rise to flavor conversion on a much shorter time scale. This phenomenon of "fast flavor conversion" occurs even for vanishing ∆m 2 /2E and thus does not depend on energy, but only on the angle distributions. Moreover, it does not require neutrinos to mix or to have masses, except perhaps for providing seed disturbances. We also construct a simple homogeneous example consisting of intersecting beams and study a schematic supernova model proposed by Ray Sawyer, where ν e andν e emerge with different zenith-angle distributions, the key ingredient for fast flavor conversion. What happens in realistic astrophysical scenarios remains to be understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.