In this paper, a passive double-balanced mixer in SiGe HBT technology is presented. Owing to lack of suitable passive mixing elements in the technology, the mixing elements are formed by diode-connected HBTs. The mixer uses lumped element Marchand baluns on both the local oscillator (LO) and the radio frequency (RF) port. A break out of the Marchand balun is measured. This demonstrates good phase and magnitude match of 0.7° and 0.11 dB, respectively. The Marchand baluns are broadband with a measured 3 dB bandwidth of 6.4 GHz, while still having a magnitude imbalance better than 0.4 dB and a phase imbalance better than 5°. Unfortunately with a rather high loss of 2.5 dB, mainly due to the low Q-factor of the inductors used. The mixer is optimized for use in doppler radars and is highly linear with a 1 dB compression point above 12 dBm IIP2of 66 dBm. The conversion gain at the center frequency of 8.5 GHz is −9.8 dB at an LO drive level of 15 dBm. The whole mixer is very broadband with 3 dB bandwidth from 7 to 12 GHz covering the entire X-band. The LO–IF, RF–IF, and RF–LO isolation is better than 46, 36, and 36 dB, respectively, in the entire band of operation.
Abstract-A new type of Marchand balun is presented in this paper, which has the property of complex impedance transformation. To allow the Marchand balun to transform between arbitrary complex impedances, three reactances should be added to the circuit. A detailed analysis of the circuit gives the governing equations. To verify the theory, a design and electromagnetic simulation of a lumped element Marchand balun is made in a SiGe BiCMOS technology. The lumped element impementation is favorable because capacitors are placed where the additional reactances should be added. Thus it is possible to absorb a positive reactance by reducing a capacitor. At the design frequency of 10.5 GHz it matches 50Ω to 50 − j66Ω. It has an insertion loss of 5.1 dB, an input reflection of -20.8 dB, as well as phase and magnitude imbalance better than 0.2• and 0.12 dB, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.