Abstract-Communications-Based Train Control (CBTC) is a modern signalling system that uses radio communication to transfer train control information between train and wayside. The trackside networks in these systems are mostly based on conventional infrastructure Wi-Fi (IEEE 802.11). It means a train has to continuously associate (i.e. perform handshake) with the trackside Wi-Fi Access Points (AP) as it moves, which incurs communication delays. Additionally, these APs are connected to the wayside infrastructure via optical fiber cables that incurs huge costs. This paper presents a novel design in which trackside nodes function in ad-hoc Wi-Fi mode, which means no association has to be performed with them prior to transmitting. A node upon receiving packets from a train forwards these packets to the next node, forming a chain of nodes. Following this chain, packets arrive at the destination. To make the design resilient against interference and failures, transmissions are separated on multiple frequencies and a node forwards packets to not only one but two of its neighbors. This paper investigates the resiliency, redundancy and scalability performance of this design and presents the results both from a field experiment involving prototype hardware and an extensive simulation study.
Document VersionAbstract-Communications-Based Train Control (CBTC) is a modern signalling system that uses radio communication to transfer train control information between the train and the wayside. A vast majority of CBTC systems worldwide use IEEE 802.11 Wi-Fi as the radio technology mostly due to its costeffectiveness. The trackside networks in these systems are mostly based on conventional infrastructure Wi-Fi. It means a train has to continuously associate (i.e. perform handshake) with the trackside Wi-Fi Access Points (AP) as it moves. This is a timeconsuming process associated with a certain delay. Additionally, these APs are connected to the wayside infrastructure via optical fiber cables that incurs huge costs. This paper presents a novel design in which trackside nodes function in ad-hoc Wi-Fi mode, which means no association has to be performed with them prior to transmitting. A train simply broadcasts packets to any nodes in its range. A node upon receiving these packets forwards them to the next node and so on, forming a chain of nodes. Following this chain, packets arrive at the destination. To make the design resilient against interference, transmissions are separated on multiple frequencies. Furthermore, redundancy is introduced in the design as a node forwards packets to not only one but two of its neighbors. This paper investigates the performance of the new design from the perspective of resiliency, redundancy and scalability, and presents the results both from a field experiment carried out using prototype hardware and an extensive simulations study.
Communications-Based Train Control (CBTC) is a modern signalling system that uses radio communication to transfer train control information between train and wayside. The trackside networks in these systems are mostly based on conventional infrastructure Wi-Fi (IEEE 802.11). It means a train has to continuously associate (i.e. perform handshake) with the trackside Wi-Fi Access Points (AP) as it moves, which incurs communication delays. Additionally, these APs are connected to the wayside infrastructure via optical fiber cables that incur huge installation costs. Our earlier work presented a novel design in which trackside nodes function in ad-hoc Wi-Fi mode, which means no handshake has to be performed with them prior to transmitting. A node upon receiving packets from a train forwards these packets to the next node, forming a chain of nodes. Following this chain, packets reach the destination. To make the design resilient against interference between the nodes, transmissions are separated on multiple frequencies, ensuring a certain separation between the transmissions. Nonetheless, the results show that despite this separation, a significant amount of interference is experienced along the chain due to the interference range being greater than the frequency separation distance. This paper proposes an extension to the design in which additional frequencies are employed in an interleaving fashion to optimize the frequency separation distance and presents the results from an extensive simulation study.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.