Snakebite envenoming is predominantly an occupational disease of the rural tropics, causing death or permanent disability to hundreds of thousands of victims annually. The diagnosis of snakebite envenoming is commonly based on a combination of patient history and a syndromic approach. However, the availability of auxiliary diagnostic tests at the disposal of the clinicians vary from country to country, and the level of experience within snakebite diagnosis and intervention may be quite different for clinicians from different hospitals. As such, achieving timely diagnosis, and thus treatment, is a challenge faced by treating personnel around the globe. For years, much effort has gone into developing novel diagnostics to support diagnosis of snakebite victims, especially in rural areas of the tropics. Gaining access to affordable and rapid diagnostics could potentially facilitate more favorable patient outcomes due to early and appropriate treatment. This review aims to highlight regional differences in epidemiology and clinical snakebite management on a global scale, including an overview of the past and ongoing research efforts within snakebite diagnostics. Finally, the review is rounded off with a discussion on design considerations and potential benefits of novel snakebite diagnostics.
Each year, thousands of people fall victim to envenomings caused by cobras.These incidents often result in death due to paralysis caused by α-neurotoxins from the three-finger toxin (3FTx) family, which are abundant in elapid venoms. Due to their small size, 3FTxs are among the snake toxins that are most poorly neutralized by current antivenoms, which are based on polyclonal antibodies of equine or ovine origin. While antivenoms have saved countless lives since their development in the late 18th century, an opportunity now exists to improve snakebite envenoming therapy via the application of new biotechnological methods, particularly by developing monoclonal antibodies against poorly neutralized α-neurotoxins. Here, we describe the use of phagedisplayed synthetic antibody libraries and the development and characterization of six synthetic antibodies built on a human IgG framework and developed against α-cobratoxinthe most abundant long-chain α-neurotoxin from Naja kaouthia venom. The synthetic antibodies exhibited sub-nanomolar affinities to α-cobratoxin and neutralized the curare-mimetic effect of the toxin in vitro. These results demonstrate that phage display technology based on synthetic repertoires can be used to rapidly develop human antibodies with druggrade potencies as inhibitors of venom toxins.
With the introduction of powerful mass spectrometry equipment into the field of snake venom proteomics, a large body of venomics data is accumulating. To allow for better comparison between venom compositions from different snake species and to provide an online database containing this data, we devised the Snake Venomics Display toolbox for visualization of snake venomics data on linear scales. This toolbox is freely available to be used online at https://tropicalpharmacology.com/tools/snake-venomics-display/ and allows researchers to visualize venomics data in a Relative Abundance (%) visualization mode and in an Absolute Abundance (mg) visualization mode, the latter taking venom yields into account. The curated venomics data for all snake species included in this database is also made available in a downloadable Excel file format. The Snake Venomics Display toolbox represents a simple way of handling snake venomics data, which is better suited for large data sets of venom compositions from multiple snake species.
Background: Brazil is home to a multitude of venomous snakes, perhaps the most medically relevant of which belong to the Bothrops genus. Bothrops spp. are responsible for roughly 70% of all snakebites in Brazil, and envenomings caused by their bites can be treated with three types of antivenom: bothropic antivenom, bothro-lachetic antivenom, and bothro-crotalic antivenom. The choice in antivenom that is administered depends not only on its availability and how certain the treating physician is that the patient was bitten by a bothropic snake. The diagnosis of a bothropic envenoming can be made based on expert identification of a photo of the snake or based on a syndromic approach wherein the clinician examines the patient for characteristic manifestations of envenoming. This approach can be very effective but requires staff that has been trained in clinical snakebite management, which, unfortunately, far from all relevant staff has. Results: In this paper, we describe a prototype of the first lateral flow assay (LFA) capable of detecting venoms from Brazilian Bothrops spp. The monoclonal antibodies for the assay were generated using hybridoma technology and screened in sandwich enzyme-linked immunosorbent assays (ELISAs) to identify Bothrops spp. specific antibody sandwich pairs. The sandwich pairs were used to develop a prototype LFA that was able to detect venom from several different Bothrops spp. The limit of detection (LoD) of the prototype was evaluated using Brazilian B. atrox whole venom and was determined to be 8.0 ng/mL in spiked serum samples and 9.5 ng/mL in spiked urine samples, when using a portable reader, and < 25 ng/mL in spiked buffer when reading by eye. Significance: The work presented here serves as a proof of concept of a genus-specific venom detection kit, which could support physicians in diagnosing Bothrops envenomings. Although further optimization and testing is needed before the LFA can find clinical use, such a device could aid in decentralizing antivenoms in the Brazilian Amazon and help ensure optimal snakebite management for even more victims of this highly neglected disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.