SUMMARYIn recent years, the utilization of machine learning and data mining techniques for intrusion detection has received great attention by both security research communities and intrusion detection system (IDS) developers. In intrusion detection, the most important constraints are the imbalanced class distribution, the scarcity of the labeled data, and the massive amounts of network flows. Moreover, because of the dynamic nature of the network flows, applying static learned models degrades the detection performance significantly over time. In this article, we propose a new semi-supervised stream classification method for intrusion detection, which is capable of incremental updating using limited labeled data. The proposed method, called the incremental semi-supervised flow network-based IDS (ISF-NIDS), relies on an incremental mixed-data clustering, a new supervised cluster adjustment method, and an instance-based learning. The ISF-NIDS operates in real time and learns new intrusions quickly using limited storage and processing power. The experimental results on the KDD99, Moore, and Sperotto benchmark datasets indicate the superiority of the proposed method compared with the existing state-of-the-art incremental IDSs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.