A new multi-dimensional quasi-discrete model is suggested and tested for the analysis of heating and evaporation of Diesel fuel droplets. As in the original quasi-discrete model suggested earlier, the components of Diesel fuel with close thermodynamic and transport properties are grouped together to form quasi-components. In contrast to the original quasi-discrete model, the new model takes into account the contribution of not only alkanes, but also various other groups of hydrocarbons in Diesel fuels; quasi-components are formed within individual groups. Also, in contrast to the original quasidiscrete model, the contributions of individual components are not approximated by the distribution function of carbon numbers. The formation of quasi-components is based on taking into account the contributions of individual components without any approximations. Groups contributing small * Corresponding author.Tel. +44 (0)
Biodiesel fuel droplet heating and evaporation is investigated using the previously developed models, taking into account temperature gradient, recirculation, and species diffusion within droplets. The analysis is focused on four types of biodiesel fuels: Palm Methyl Ester, Hemp Methyl Esters, Rapeseed oil Methyl Ester, and Soybean oil Methyl Ester. These fuels contain up to 15 various methyl esters and possibly small amounts of unspecified additives, which are treated as methyl esters with some average characteristics. Calculations are performed using two approaches: 1) taking into account the contribution of all components of biodiesel fuels (up to 16); and 2) assuming that these fuels can be treated as a one component fuel with averaged transport and thermodynamic coefficients. It is pointed out that for all types of biodiesel fuel the predictions of the multi-component and single component models are rather close (the droplet evaporation times predicted by these models differ by less than about 5.5%). This difference is much smaller than observed in the case of Diesel and gasoline fuel droplets, and is related to the 1 Corresponding author, e-mail: S.Sazhin@brighton.ac.uk
Preprint submitted to FuelMarch 28, 2013 fact that in the case of Diesel and gasoline fuel droplets the contribution of components in a wide range of molar masses and enthalpies of evaporation needs to be taken into account, while in the case of biodiesel fuels the main contribution comes from the components in a narrow range of molar masses and enthalpies of evaporation. As in the case of Diesel and gasoline fuel droplets, the multi-component model predicts higher droplet surface temperature and longer evaporation times than the single component model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.