The mixed convection investigation of various design parameters utilizing finned pipes in the cylindrical enclosure has been investigated computationally. Various geometries of fins are used (circular and longitudinal). The effect of fins number (12-16), aspect ratio (1.83-2.7), radius ratio (2-3) and fins geometry have been introduced within the present study. The observations show that when Richardson number=0.5 and 5.5, the heat transfer decreases by 12.22% and 7.777%.,. Values of the Nusselt number rise as the number of fins increases. While, when the Rayleigh number is high, no noticeable variations in the numbers of fins (12 and 14). The purpose of using fins is to increase the surface area of heat transmission. The highest heat transfer improvement is shown to be 4.2%, when log (Rayleigh)=7.342 and 16 fins are utilized. The radius ratio does not affect Nusselt number throughout the whole Richardson and Rayleigh in both hot and cold locales. The turbulence sub-layer does not affect the free stream behaviour for different Richardson number. In the case of high Richardson number, the geometry does not influence the Nu. Longitudinal fins do not have dead zones, unlike circular fins, which have channelling generated by geometrical arrangement. To reach thermal equilibrium in a cold environment, the Nu in rectangular fins was reduced by 18% as compared to circular fins with a low Richardson number. Flow development would increase the impact of channelling. The heat transfer improvement decreases as the number of fins increases, as illustrated in temperature and velocity profiles for various values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.