Two uncouplers of oxidative phosphorylation, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), were tested for their ability to modify the survival of cultured Chinese hamster ovary (CHO) and Chinese hamster V79 cells treated with hyperthermia. The uncouplers were used under conditions that inhibit oxidative ATP synthesis, as judged from measurements of cellular ATP levels. Incubation of CHO cells in glucose-free Hanks' balanced salt solution (HBSS) containing 1 mM DNP for 1 h at 37 degrees C followed by reincubation at 37 degrees C in complete growth medium for 3 or 16 h, showed no substantial changes in the 45 degrees C heat survival curve as compared to heated cells not exposed to DNP. Thus, DNP treatment of CHO cells did not induce thermotolerance. Carbonyl cyanide m-chlorophenylhydrazone (CCCP), tested under similar experimental conditions, did alter cellular heat resistance. The major change in the 45 degrees C survival curve of CHO cells pretreated with CCCP was an increase in the width of the shoulder: the Dq value increased from 14 min to 24 min, for the control and CCCP-treated cells respectively. The D0 value did not change appreciably. In contrast, heat-induced thermotolerance (10 min, 45 degrees C + 16 h, 37 degrees C) was characterized primarily by an increase in the D0 parameter from 4 min (unheated cells) to 17 min. Similar results were observed with CCCP-treated V79 cells. The data demonstrate that heat resistance induced by 1.2 microM CCCP was manifest as an increased cellular capacity to accumulate and/or repair hyperthermia damage, rather than an induction of thermotolerance, and that this effect probably was not related to the action of CCCP as an uncoupler of oxidative phosphorylation.
We have tested the reported ability of procaine to inhibit the induction and the development of thermotolerance in Chinese hamster ovary cells. Thermotolerance was induced either by hyperthermia alone (10 min, 45 degrees C) or by combining hyperthermia and procaine (5 min, 45 degrees C + 10 mM procaine) with heating times adjusted to yield similar cell survival after the conditioning treatments. Both the kinetics of thermotolerance development in fresh medium without procaine and the magnitude of thermotolerance 6 h after heat conditioning were similar for the two treatment groups. Development of thermotolerance in the presence of procaine was tested by adding the drug at 5 or 10 mM to culture medium between, but not during two fractionated heat treatments. Thermotolerance development was observed even in the presence of 10 mM procaine, but only if cell survival was corrected for the 37 degrees C-procaine toxicity. Complete survival curves of cells incubated for 6 h at 37 degrees C in 7.5 mM procaine between heat conditioning and test heating showed a D0 that was only 35 per cent lower than that of thermotolerant controls. The data are consistent with the reported sensitization to heat killing by procaine, but show that thermotolerance induction and development were only minimally perturbed by procaine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.