Therapeutic plasmapheresis (TP) is the process of the separation and removal of plasma from other blood components and is considered as an adjunctive treatment strategy to the discarded abnormal agent in the management of respiratory viral pandemics. This article reviews the mechanisms of immunopathogenesis and coagulopathy induced by SARS-CoV-2 and the potential benefits of TP as adjunctive treatment in critically COVID-19 patients.
Purpose:
To investigate whether autologous platelet-rich plasma (PRP) eye drops accelerate re-epithelialization of post-keratoplasty persistent corneal epithelial defects (PEDs).
Methods:
A total of 34 eyes with PEDs after keratoplasty (24 penetrating keratoplasty and 10 deep anterior lamellar keratoplasty) that were refractory to conventional medical treatments were treated with PRP eye drops every 3 hours. PRP eye drops were prepared with a low- and high-speed centrifugation method and final platelet counts were 700,000-800,000 plt/μl. The mean treatment duration for complete re-epithelialization was compared with the mean treatment duration of conventionally treated corneal defects before the PRP treatment by paired
t
-test. The mean treatment duration was also statistically analyzed between age groups, gender, indications for keratoplasty, and types of keratoplasty using analysis of variance (ANOVA).
Results:
Treatment with autologous PRP eye drops led to rapid re-epithelialization in all eyes. The mean treatment duration for complete re-epithelialization was 2.47 ± 1.21 weeks, which was significantly shorter than the mean treatment duration of conventionally treated corneal defects before PRP treatment (6.82 ± 1.24 weeks) (
P
= 0.0001). There was no significant correlation between re-epithelialization time and patients' age, sex, indications for keratoplasty, and techniques of corneal transplantation.
Conclusion:
Treatment with autologous PRP eye drops is an effective and reliable approach that accelerates re-epithelialization of post-transplantation PEDs.
This study was conducted to examine morphological, genotypic, and phenotypic alterations occurring in cultured adult human retinal pigment epithelial cells when encapsulated with different concentrations of fibrin glue. Cultivated adult human retinal pigment epithelial cells were encapsulated with different concentrations of fibrin glue, namely FG1 (42 mg/dl), FG2 (84 mg/dl), FG3 (124 mg/dl), FG4 (210 mg/dl), followed by the evaluation of genetic and cytomorphological changes and protein expression. Cultured adult human retinal pigment epithelial cells showed dendritiform morphology during the early days of encapsulation with fibrin glue. Moreover, an increasing inhibitory effect on cell growth was observed with increasing concentrations of fibrin glue. At the transcriptional level, the expression of MMP2, PAX6, and ITGB1 in FG1-encapsulated cells was significantly higher than that in other treated groups; however, the expression of ACTA2 was lower in all fibrin glue-encapsulated groups compared to that in the controls. Immunocytochemistry showed that FG2-encapsulated cells expressed cytokeratin 8/18, RPE65, and ZO-1 proteins, but not PAX6. In conclusion, fibrin glue at a concentration of 84 mg/dl allows proper encapsulation of adult human retinal pigment epithelial cells, while preserving the morphometric, genotypic, and phenotypic features of the cells. This three-dimensional biopolymer can be considered a reliable vehicle for retinal pigment epithelium cell transplantation in cell-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.