In this research, the (1−x)(BNKT-BST)-xBFTa ceramics were fabricated via a solid-state mixed oxide method and sintered at the temperature of 1125°C for 2 h dwell time in order to obtain dense ceramics. The XRD and Raman data revealed the coexisting rhombohedral and tetragonal phases for all samples. The density increased with increasing the additive content, which resulted in the improvements of mechanical and dielectric properties. The maximum dielectric (r = 1799) and mechanical properties (H V = 6.30 GPa, H K = 5.30 GPa, E = 97 GPa and K IC = 1.95 MPa.m 1/2) were observed. The leakage current density (J) increased with increasing amount of the additive at high electric fields of 30 kV/cm while the resistivity (ρ) was also found to decrease with the additive. The magnetocapacitance (-MC%) value also increased with increasing of the additive. The obtained results suggested that the additive not only enhanced the mechanical but also improved electrical properties of the studied samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.