In this paper we propose a distributed intrusion detection system for ad hoc wireless networks based on mobile agent technology. Wireless networks are particularly vulnerable to intrusion, as they operate in open medium, and use cooperative strategies for network communications. By efficiently merging audit data from multiple network sensors, we analyze the entire ad hoc wireless network for intrusions and try to inhibit intrusion attempts. In contrast to many intrusion detection systems designed for wired networks, we implement an efficient and bandwidth-conscious framework that targets intrusion at multiple levels and takes into account distributed nature of ad hoc wireless network management and decision policies.
Abstract-Video game content includes the levels, models, items, weapons, and other objects encountered and wielded by players during the game. In most modern video games, the set of content shipped with the game is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly renewed, players would remain engaged longer in the evolving stream of novel content. To realize this ambition, this paper introduces the content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) algorithm, which automatically evolves game content based on player preferences, as the game is played. To demonstrate this approach, the Galactic Arms Race (GAR) video game is also introduced. In GAR, players pilot space ships and fight enemies to acquire unique particle system weapons that are evolved by the game. As shown in this paper, players can discover a wide variety of content that is not only novel, but also based on and extended from previous content that they preferred in the past. The implication is that it is now possible to create games that generate their own content to satisfy players, potentially significantly reducing the cost of content creation and increasing the replay value of games.
Abstract-Simulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and in simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer. This paper introduces two novel technologies that take steps toward achieving this ambition: (1) A new algorithm called content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) is introduced that automatically generates graphical and game content while the game is played, based on the past preferences of the players, and (2) Galactic Arms Race (GAR), a multiplayer video game, is constructed to demonstrate automatic content generation in a real online gaming platform. In GAR, which is available to the public and playable online, players pilot space ships and fight enemies to acquire unique particle system weapons that are automatically evolved by the cgNEAT algorithm. A study of the behavior and results from over 1,000 registered online players shows that cgNEAT indeed enables players to discover a wide variety of appealing content that is not only novel, but also based on and extended from previous content that they preferred in the past. Thus GAR is the first demonstration of evolutionary content generation in an online multiplayer game. The implication is that with cgNEAT it is now possible to create applications that generate their own content to satisfy users, potentially reducing the cost of content creation and increasing entertainment value from single player to massively multiplayer online games (MMOGs) with a constant stream of evolving content.
In this paper we propose a distributed intrusion detection system for ad hoc wireless networks based on mobile agent technology. Wireless networks are particularly vulnerable to intrusion, as they operate in open medium, and use cooperative strategies for network communications. By efficiently merging audit data from multiple network sensors, we analyze the entire ad hoc wireless network for intrusions and try to inhibit intrusion attempts. In contrast to many intrusion detection systems designed for wired networks, we implement an efficient and bandwidth-conscious framework that targets intrusion at multiple levels and takes into account distributed nature of ad hoc wireless network management and decision policies.
<p class="MsoNormal" style="text-align: left; margin: 0cm 0cm 0pt; layout-grid-mode: char;" align="left"><span class="text"><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;">In this paper, we present a novel approach to detect unknown virus using dynamic instruction sequences mining techniques. We collect runtime instruction sequences from unknown executables and organize instruction sequences into basic blocks. We extract instruction sequence patterns based on three types of instruction associations within derived basic blocks. Following a data mining process, we perform feature extraction, feature selection and then build a classification model to learn instruction association patterns from both benign and malicious dataset automatically. By applying this classification model, we can predict the nature of an unknown program. We also build a program monitor which is able to capture runtime instruction sequences of an arbitrary program. The monitor utilizes the derived classification model to make an intelligent guess based on the information extracted from instruction sequences to decide whether the tested program is benign or malicious. Our result shows that our approach is accurate, reliable and efficient.</span></span><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;"></span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.