Mimetic gravity is a Weyl-symmetric extension of General Relativity, related to the latter by a singular disformal transformation, wherein the appearance of a dust-like perfect fluid can mimic cold dark matter at a cosmological level. Within this framework, it is possible to provide an unified geometrical explanation for dark matter, the late-time acceleration, and inflation, making it a very attractive theory. In this review, we summarize the main aspects of mimetic gravity, as well as extensions of the minimal formulation of the model. We devote particular focus to the reconstruction technique, which allows the realization of any desired expansionary history of the Universe by an accurate choice of potential, or other functions defined within the theory (as in the case of mimetic f (R) gravity). We briefly discuss cosmological perturbation theory within mimetic gravity. As a case study within which we apply the concepts previously discussed, we study a mimetic Hořava-like theory, of which we explore solutions and cosmological perturbations in detail. Finally, we conclude the review by discussing static spherically symmetric solutions within mimetic gravity, and apply our findings to the problem of galactic rotation curves. Our review provides an introduction to mimetic gravity, as well as a concise but self-contained summary of recent findings, progresses, open questions, and outlooks on future research directions.
It is shown that the acceleration of the universe can be understood by considering a F (T ) gravity models. For these F (T ) gravity models, a variant of the accelerating cosmology reconstruction program is developed. Some explicit examples of F (T ) are reconstructed from the background FRW expansion history. *
Abstract. Dark energy cosmology is considered in a modified Gauss-Bonnet model of gravity with and without a scalar field. It is shown that these generalizations of General Relativity endow it with a very rich cosmological structure: it may naturally lead to an effective cosmological constant, quintessence or phantom cosmic acceleration, with the possibility to describe the transition from a decelerating to an accelerating phase explicitly. It is demonstrated here that these modified GB and scalar-GB theories are perfectly viable as cosmological models. They can describe the ΛCDM cosmological era without any need for a cosmological constant. Specific properties of these theories of gravity in different particular cases, such as the de Sitter one, are studied.PACS numbers: 04.50. Kd, 95.36.+x,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.