In the present work, selected plants were screened for their potential antibacterial activity. For evaluating antibacterial activity, both aqueous and organic solvent methanol was used. The plants screened were Ocimum sanctum, Jatropha gossypifolia, Boerhavia diffusa, Azadirachta indica, Solidago virgaurea, and Commelina benghalensis. The antibacterial activity was assessed against six bacterial strains--Pseudomonas testosteroni, Staphylococcus epidermidis, Klebsiella pneumoniae, Bacillus subtilis, Proteus morganii, Micrococcus flavus. Agar disc diffusion method and Agar ditch diffusion method were used to study the antibacterial activity of all these plants. Ps. testosteroni and K. pneumoniae were the most resistant bacterial strains. A. indica showed strong activity against tested bacterial strains. Therefore, we conclude that A. indica may prove to be a promising agent, and further exploration into this compound should be performed to determine its full therapeutic potential. In addition, its leaf extract can also be used as a lead molecule in combating the diseases caused by the studied bacterial strains.
Aims: To develop and apply a quantitative protocol for assessing the transfer of bacteria from bleached and undyed fabrics of 100% cotton and 50% cotton + 50% polyester (poly cotton) to ®ngerpads or other pieces of fabric. Methods and Results: Test pieces of the fabrics were mounted on custom-made stainless steel carriers to give a surface area of 1 cm in diameter, and each piece seeded with about 10 5 cfu of Staphylococcus aureus from an overnight broth culture; the inoculum contained 5% fetal bovine serum as the soil load. Transfer from fabric to fabric was performed by direct contact using moist and dry fabrics. Transfers from fabrics to ®ngerpads of adult volunteers were tested using moist, dry and re-moistened pieces of the fabrics, with or without friction during the contact. Bacterial transfer from fabrics to moistened ®ngerpads was also studied. All the transfers were conducted under ambient conditions at an applied pressure of 0á2 kg cm )2 . After the transfer, the recipient ®ngerpads or fabric pieces were eluted, the eluates spreadplated, along with appropriate controls, on tryptic soy agar and the percentage transfer calculated after the incubation of the plates for 24 h at 37°C. Conclusions: Bacterial transfer from moist donor fabrics using recipients with moisture 1 was always higher than that to and from dry ones. Friction increased the level of transfer from fabrics to ®ngerpads by as much as ®vefold. Bacterial transfer from poly cotton was consistently higher when compared with that from all-cotton material. Signi®cance and Impact of the Study: The data generated should help in the development of better models to assess the role fabrics may play as vehicles for infectious agents. Also, the basic design of the reported methodology lends itself to work with other types of human pathogens.
The following Schiff bases have been synthesized: (1) 4-[(2-chlorobenzylidene)amino]benzoic acid [JP1], (2) 4-[(furan-2-ylmethylene)amino]benzoic acid [JP2], (3) 4-[(3-phenylallylidene)amino]benzoic acid [JP3], (4) 4-[(2-hydroxybenzylidene)amino]benzoic acid [JP4], (5) 4-[(4-hydroxy-3-methoxybenzylidene)amino]benzoic acid [JP5] and (6) 4-[(3-nitrobenzylidene)amino]benzoic acid [JP6].They were screened as potential antibacterial agents against a number of medically important bacterial strains. The antibacterial activity was studied against A. faecalis ATCC 8750, E. aerogenes ATCC 13048, E. coli ATCC 25922, K. pneumoniae NCIM 2719, S. aureus ATCC 25923, P. vulgaris NCIM 8313, P. aeruginosa ATCC 27853 and S. typhimurium ATCC 23564. The antibacterial activity was evaluated using the Agar Ditch method. The solvents used were 1,4-dioxane and dimethyl sulfoxide. Different effects of the compounds were found in the bacterial strains investigated and the solvents used, suggesting, once again, that the antibacterial activity is dependent on the molecular structure of the compound, the solvent used and the bacterial strain under consideration. In the present work, 1,4-dioxane proved to be a good solvent in inhibiting the above stated bacterial strains.
Schiff bases derived from 4-aminoantipyrine and vanillin were evaluated for their potential as antibacterial agents against some Gram positive and Gram negative bacterial strains. The antibacterial activity was studied against P. pseudoalcaligenes ATCC 17440, P. vulgaris NCTC 8313, C. freundii ATCC 10787 E. aerogenes ATCC 13048, S. subfava NCIM 2178 and B. megaterium ATCC 9885. The determination of the antibacterial activity was done using the Agar Ditsh method. The Schiff bases produced were: (1) 4-(4-hydroxy 3-methoxybenzylideneamino) -1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VV1]; (2) 4-(benzylideneamino) -1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VY2]); (3) 4-[(furan-3-ylmethylene) amino ]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VY3]?; (4) 4-(4-methoxybenzylideneamino) -1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one [VY4]?; (5) 2-methoxy-4-[(4-methoxyphenylimino) methyl ]phenol [VY5]; (6) 4-[(2,4-dimethylphenylimino) methyl]-2-methoxyphenol [VY6]); (7) 2-methoxy-4-(naphthalene-1-yliminomethyl) phenol [VY7]?and (8) 4-[(4-hydroxy-3-methoxybenzylidene)amino]-N-(5-methylisoxazol 3-yl)benzenesulfonamide [VY8]. The antibacterial activity was evaluated in two polar solvents, DMSO and DMF. The Schiff bases derived from vanillin as the central molecule with 2,4-dimethylaniline and sulphamethoxazole as the side chain in DMSO effectively inhibited the investigated bacteria and appear to be promising antimicrobial agents.
The methanol, acetone and N, N-dimethylformamide (DMF) fractions of leaves of Psidium guajava L. were evaluated for antibacterial and antifungal activity. Piperacillin and gentamicin were used as standards for antibacterial assay, while nystatin and flucanazole were used as standards for antifungal assay. 91 clinically important strains were used for the study which were both clinical isolates as well as identified strains. The antibacterial activity was more pronounced against gram-positive bacterial and fungal strains. Moderate activity was shown against the gram-negative bacterial strains studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.