Purpose
This paper aims to analyse the behaviour of dune sand mortars with the addition of ceramic waste. The objective of improving the performance of these modified mortars was evaluated in terms of accelerated carbonation performance.
Design/methodology/approach
The effect of these recycled materials was studied in an experimental programme through several tests. The carbonation depth was determined using a classical phenolphthalein test. The mass fractions of Ca(OH)2 and CaCO3 were calculated using thermogravimetric analysis, water absorption occurring through capillary action and open porosity, and the mechanical characteristics were measured after subjecting the materials to wetting–drying cycles.
Findings
The results show that using ceramic waste provides better performance in terms of water absorption by capillary action, open porosity and carbonation penetration.
Originality/value
This research is a study of the incorporation of ceramic waste up to 10 per cent in dune sand mortar. The choice of using ceramic waste to produce dune sand mortars has benefits from economic, environmental and technical points of view and offers a possibility for improving the durability of mortars.
The waste-modified mortars have an important place in the range of repair products. The objective of this study is to better understand and analyze, in one hand, the influence of ceramic waste in the dune sand mortars on the quality of repair concrete surfaces, in the other hand, durability of the mortars in interaction with the substrates to which they are applied. As regards the mortar layer durability, two indicators are chosen: the first is the adhesion to the substrate, and the second is the stress state in the mortar layer. For this, two types of modified mortars were made using two types of waste ceramics: sanitary ceramics and earthenware. To evaluate the quality of the adhesion to a substrate surface to be repaired, an adhesion test based on the three point bending test was implemented, taking into account the influences of the environment, the state of the surface of the substrate, the nature of the substrate defined by its water saturation degree and its porosity. The mortar composition parameters, in particular, the nature and the amount of ceramic, were studied. The results enable us to evaluate the influences of the waste ceramic incorporation in the mortar and the substrate condition on which the mortar is applied. Show that the adhesion depends on both the type and the amount of the used ceramic waste and the applied cure. It is optimized from 30% of ceramic earthenware and sanitary mortar adhesive strengths are higher than mortars based on dune sand ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.