5G use cases, for example enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and an ultra-reliable low latency communication (URLLC), need a network architecture capable of sustaining stringent latency and bandwidth requirements; thus, it should be extremely flexible and dynamic. Slicing enables service providers to develop various network slice architectures. As users travel from one coverage region to another area, the call must be routed to a slice that meets the same or different expectations. This research aims to develop and evaluate an algorithm to make handover decisions appearing in 5G sliced networks. Rules of thumb which indicates the accuracy regarding the training data classification schemes within machine learning should be considered for validation and selection of the appropriate machine learning strategies. Therefore, this study discusses the network model's design and implementation of self-optimization Fuzzy Qlearning of the decision-making algorithm for slice handover. The algorithm's performance is assessed by means of connection-level metrics considering the Quality of Service (QoS), specifically the probability of the new call to be blocked and the probability of a handoff call being dropped. Hence, within the network model, the call admission control (AC) method is modeled by leveraging supervised learning algorithm as prior knowledge of additional capacity. Moreover, to mitigate high complexity, the integration of fuzzy logic as well as Fuzzy Q-Learning is used to discretize state and the corresponding action spaces. The results generated from our proposal surpass the traditional methods without the use of supervised learning and fuzzy-Q learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.