The study of biomolecular interactions is crucial to get more insight into the biological system. The interactions of protein-protein, protein-nucleic acids, protein-sugars, nucleic acid-nucleic acids and protein-small molecules are supporting therapeutics and technological developments. Recently, the development in a large number of analytical techniques for characterizing biomolecular interactions reflect the promising research investments in this field. In this review, microscale thermophoresis technology (MST) is presented as an analytical technique for characterizing biomolecular interactions. Recent years have seen much progress and several applications established. MST is a powerful technique in quantitation of binding events based on the movement of molecules in microscopic temperature gradient. Simplicity, free solutions analysis, low sample volume, short analysis time, and immobilization free are the MST advantages over other competitive techniques. A wide range of studies in biomolecular interactions have been successfully carried out using MST, which tend to the versatility of the technique to use in screening binding events in order to save time, cost and obtained high data quality.
Mobility shift-affinity capillary electrophoresis was employed for enantioseparation and simultaneous binding constant determination. Human serum albumin was used as a chiral selector in the background electrolyte composed of 20 mM phosphate buffer, pH 7.4. The applied setup supports a high mobility shift since albumin and the drug-albumin complex hold negative net charges, while model compounds of amlodipine and verapamil are positively charged. In order to have an accurate effective mobility determination, the Haarhoff-van der Linde function was utilized. Subsequently, the association constant was determined by nonlinear regression analysis of the dependence of effective mobilities on the total protein concentration. Differences in the apparent binding status between the enantiomers lead to mobility shifts of different extends (α). This resulted in enantioresolutions of Rs = 1.05-3.63 for both drug models. R-(+)-Verapamil (K A 1844 M −1) proved to bind stronger to human serum albumin compared to S-(−)-verapamil (K A 6.6 M −1). The association constant of S-(−)-amlodipine (K A 25 073 M −1) was found to be slightly higher compared to its antipode (K A 22 620 M −1) when applying the racemic mixture. The low measurement uncertainty of this approach was demonstrated by the close agreement of the association constant of the enantiopure S-(−)-form (K A 25 101 M −1).
In this study, two capillary electrophoresis-based ligand binding assays, namely, mobility shift affinity capillary electrophoresis (ms-ACE) and capillary electrophoresis-frontal analysis (CE-FA), were applied to determine binding parameters of human serum albumin toward small drugs under similar experimental conditions. The substances S-amlodipine (S-AML), lidocaine (LDC), l-tryptophan (l-TRP), carbamazepine (CBZ), ibuprofen (IBU), and R-verapamil (R-VPM) were used as the main binding partners. The scope of this comparative study was to estimate and compare both the assays in terms of their primary measure's precision and the reproducibility of the derived binding parameters. The effective mobility could be measured with pooled CV values between 0.55% and 7.6%. The precision of the r values was found in the range between 1.5% and 10%.Both assays were not universally applicable. The CE-FA assay could successfully be applied to measure the drugs IBU, CBZ, and LDC, and the interaction toward CBZ, S-AML, l-TRP, and R-VPM could be determined using ms-ACE. The average variabilities of the estimated binding constants were 64% and 67% for CE-FA and ms-ACE, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.