Nine new transition-metal dithiocarbamates involving ferrocene (Fc), namely, [M(FcCH(2)Bzdtc)(2)] (M=Ni(II) (1), Cu(II) (2), Cd(II) (3), Hg(II) (4), Pd(II) (5), Pt(II) (6) and Pb(II) (7); Bzdtc=N-benzyl dithiocarbamate) and [M(FcCH(2)Bzdtc)(3)] (M=Co(II) (8) and UO(2) (VI) (9)), have been synthesised and characterised by micro analyses, IR spectroscopy, (1)H and (13)C NMR spectroscopy, and in three cases by single-crystal X-ray analysis. The peak broadening in the (1)H spectrum of the copper complex indicates the paramagnetic behaviour of this compound. A square-planar geometry around the nickel and copper complexes and distorted linear geometry around the mercury complex have been found. The latter geometry is attributed to the bulkiness of the methylferrocenyl and benzyl groups. The observed single quasi-reversible cyclic voltammograms for complexes 2, 8 and 9 indicate the stabilisation of a metal centre other than Fe in their characteristic oxidation state. These complexes have been used as a photosensitiser in dye-sensitised solar cells.
Three new d 10 transition-metal dithiocarbamates containing ferrocene, namely [M(FcCH 2 EtOHdtc) 2 ] (M = Zn, Cd and Hg; dtc = dithiocarbamate) have been synthesized and characterized by elemental analyses, IR, 1 H, and 13 C NMR spectroscopy, and X-ray crystallography. The coordination geometries around the zinc and mercury ions in the complexes are distorted tetrahedral and distorted linear, respectively. The distorted linear geometry around the mercury complex can be attributed to the presence of the bulky methylferrocenyl [a]
Two ferrocenyl benzimidazoles with carboxylic and nitro anchors were prepared and their light harvesting properties explored in dye-sensitized solar cells (DSSCs).
Biferrocene bearing planar metal dithiocarbamates, namely, [M(FcCH2dtc)2] (dtc = furan-2-ylmethyldithiocarbamate, M = Cu(II) 1, Ni(II) 4; dtc = benzo[d][1,3]dioxol-5-ylmethyl dithiocarbamate, M = Cu(II) 2, Ni(II) 5; dtc = pyridin-2-ylmethyldithiocarbamate, M = Cu(II) 3, Ni(II) 6; Fc = ferrocenyl; Fe(η(5)-C5H5)(η(5)-C5H4-)), have been synthesized and characterized by microanalysis, magnetic susceptibility and cyclic voltammetry. Structures of 1, 2 and 4 have been obtained by single crystal X-ray diffraction. These complexes with pyridyl, piperonyl and furfuryl as heteroaromatic groups in the dithiocarbamate ligands have been exploited as sensitizers in dye sensitized TiO2 solar cells for converting sunlight into electrical energy. Light-to-electrical energy conversion efficiencies achieved using these sensitizers are considerably greater than those obtained with analogous compounds previously reported by us. The overall conversion efficiency (η) is found to be dependent upon the nature of the heteroaromatic conjugated linkers and increases in the order η (ferrocenylfurfuryl) > η (ferrocenylpiperonyl) > η (ferrocenylpyridyl) all values being lower than that obtained in the reference Ru dye N719 under similar experimental conditions. The conversion efficiencies also vary with the metal being higher for Ni (4, 5 and 6) than for Cu complexes (1, 2 and 3). The X-ray structural analyses reveal the existence of rare M···H-C intermolecular anagostic interactions involving the metal atom in chain motifs in 1 and 4, which are retained in solution as evidenced by (1)H NMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.