Efficient textual data distributions (TDD) alignment and generation are open research problems in textual analytics and NLP. It is presently difficult to parsimoniously and methodologically confirm that two or more natural language datasets belong to similar distributions, and to identify the extent to which textual data possess alignment. This study focuses on addressing a segment of the broader problem described above by applying multiple supervised and unsupervised machine learning (ML) methods to explore the behavior of TDD by (i) topical alignment, and (ii) by sentiment alignment. Furthermore, we use multiple text generation methods including fine-tuned GPT-2, to generate text by topic and by sentiment. Finally we develop a unique process driven variation of Kullback-Leibler divergence (KLD) application to TDD, named KL Textual Distributions Contrasts (KL-TDC) to identify the alignment of machine generated textual corpora with naturally occurring textual corpora. This study thus identifies a unique approach for generating and validating TDD by topic and sentiment, which can be used to help address sparse data problems and other research, practice and classroom situations in need of artificially generated topic or sentiment aligned textual data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.