Serum protein profiles of patients with bacterial sepsis from the day of diagnosis until recovery/mortality were compared from early to late stages in response to severe sepsis using two dimensional electrophoresis. The proteins exhibiting changes during the course of sepsis (20‑28 day mortality) were selected and identified by matrix‑assisted laser desorption ionization‑time of flight‑tandem mass spectrometry. Among the proteins identified, haptoglobin (Hp), transthyretin (TTR), orosomucoid 1/α1 acid glycoprotein (ORM1), α1 antitrypsin (A1AT), serum amyloid A (SAA) and S100A9 exhibited differential expression patterns between survivors (S; n=6) and non‑survivors (NS; n=6), particularly during the early stages of sepsis. Expression factors (EFs), taken as the ratio between the NS and S during early stages, showed ratios of Hp, 0.39 (P≤0.012); TTR, 3.96 (P≤0.03); ORM1, 0.69 (P≤0.79); A1AT, 0.92 (P≤0.87) and SAA, 0.69 (P≤0.01). S100A9, an acute phase protein, exhibited an EF ratio of 1.68 (P≤0.004) during the end stages of sepsis. A delayed rise in levels was observed in Hp, A1AT, ORM1, S100A9 and SAA, whereas TTR levels increased during the early stages of sepsis in NS. Analysis of inflammatory responses in the early stages of sepsis revealed increased mRNA expression in leukocytes of interleukin (IL)‑6 (EF, 2.50), IL‑10 (EF, 1.70) and prepronociceptin (EF, 1.6), which is a precursor for nociceptin in NS compared with S, and higher Toll‑like receptor‑4 (EF, 0.30) levels in S compared with NS. Therefore, a weaker acute phase response in the early stages of sepsis in NS, combined with an inefficient inflammatory response, may contribute to sepsis mortality.
Directional transdifferentiation of bone marrow precursor cells assumes beta cell like properties in modified tissue microenvironment. The factors that modify the roles of precursor cells to functional beta cells enabling precise, defined and efficient in vitro differentiation protocols are yet to be conclusive. The study aims at the determination of appropriate induction factors that may aid the robust, reproducible transdifferentiation of rat bone marrow derived mesenchymal stem cells (MSCs) to islet-like cells and enhance their transdifferentiation efficiency. High glucose concentration including nicotinamide, β-mercaptoethanol along with β-cellulin, IGF-1 were able to induce bone marrow precursor cells to islet like clusters ex vivo consistently. The four step induction protocol has enhanced the expression of pancreatic islet cell specific transcription and translational factors detectable by immunocytochemistry viz., pro-insulin, glucagon, somatostatin and polypeptide. The functionality was assessed by the glucose challenge assay followed by animal experiment. The streptozotocin (STZ) induced rats demonstrated significant reduction in glucose levels post islet like cell transplantation (P<0.05). The tropic and the growth factors thus used have a profound impact on the induction of the bone marrow precursors to functional islet like cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.