We consider the initial value problem for systems of nonlinear Klein–Gordon equations with quadratic nonlinearities. We prove the existence of scattering states, namely, the asymptotic stability of small solutions in the neighborhood of the free solutions for small initial data in the weighted Sobolev space H4,3(R3)×H3,3(R3). If nonlinearities satisfy the strong null condition, then the same result is true in two space dimensions for small initial data in H5,4(R2)×H4,4(R2). A system of massive Dirac–massless Klein–Gordon equations in three space dimensions is also considered by our method.
AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 <
λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 < λ ≤ 1. We give sharp
bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case λ =
1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.