Bangkok, Thailand is prone to flooding after heavy rain. Many road sections become impassable, causing severe traffic congestion and greatly impacting activities. Optimal vehicle management requires the knowledge of flooding impact on road traffic conditions in specific areas. A method is proposed to quantify urban flood situations by expressing traffic conditions in specific ranges using the concept of macroscopic fundamental diagram (MFD). MFD-based judgement allows for a road manager to understand the current traffic situation and take appropriate traffic control measures. MFD analysis identified traffic flow–density and density–velocity relationships by using the shape of the estimated MFD travel time-series plots. Then, results were applied to develop a traffic model with vehicle-flow parameters as a measuring method for road-network performance. The developed model improved road-network traffic-flow performance under different flood conditions. A method is also presented for traffic management evaluation on the assumption that flooding occurs.
This study focused on pre-flood measures to estimate evacuation times impacted by flood depths and identify alternate routes to reduce loss of life and manage evacuation measures during flood disasters. Evacuation measures, including traffic characteristics, were reviewed according to different flood depths. Several scenarios were constructed for different flooding situations and traffic volumes. Evacuation times in the study area were evaluated and compared for all scenarios with reference to dry conditions. Results of network performance indicators compared to the dry situation showed that average speed dropped to 2 km/h, VHT rose above 200%, and VKT rose above 30%. Cumulative evacuee arrival percentage increased when flood levels were higher than 5 cm. Flood levels of 10–15, 15–20, 20–25, and 25–30 cm represented percentages of remaining evacuees at 9%, 19%, 49%, and 83%, respectively. Time taken to evacuate increased according to flood level. For flood depths of 5–30 cm, travel time increased by 40, 90, 260, and 670 min, respectively, suggesting the need for early evacuation before the flood situation becomes serious.
Impact of flood depth on traffic volume in two different zones of the Bangkok road network was investigated using traffic data obtained from probe vehicle trajectories. A Macroscopic Fundamental Diagram (MFD) was utilized to compare traffic flow rates across two road network zones in the city for a variety of flood depths, namely 0-5 cm, 5-10 cm, 10-15 cm, 15-30 cm, and more than 30 cm. Results of empirical analysis over an observation period of one year as 2019 showed that flood depths had a strong correlation with the MFD parameters of free-flow speed, maximum flow, and traffic jam density. In particular, road floods greatly reduced average maximum flow across the inner city road network in Bangkok. Road floods had a significant impact on traffic characteristics of urban road networks.
Today, artificial intelligence plays a huge role in the mechanical engineering field for solving many complex problems and the problem with fracture mechanics is one of them. In fracture mechanics, artificial intelligence is used to predict crack behavior under various conditions such as mixed-mode loading. Many parameters are used for explaining the crack behavior under various conditions, but those parameters are obtained from destructive testing, in which usually, only one data point is obtained from each test. An artificial problem method requires a large amount of data to train the model to be able to learn crack behavior, which is a disadvantage of applying this method to fracture mechanics. To eliminate the disadvantage of the large amount of experiment data required for modeling, in this study, the small data obtained from the experiment along with data obtained from fracture criteria that were used for elementary prediction of mixed mode fracture toughness were used to create an artificial intelligence model. Data from the experiment was combined with fracture criteria data using the multi-fidelity surrogate model that is described in this study. The mixed mode I/II fracture toughness of the PMMA material was tested in order to primarily propose the data combination technique. After the modeling process, the prediction results indicated that the performance of a model in which the actual test data was combined with the data from the fracture criteria (multi-fidelity surrogate model) was more predictively effective compared to only actual data-based modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.