The biofilm-forming ability of Burkholderia pseudomallei is crucial for its survival in unsuitable environments and is correlated with antibiotic resistance and relapsing cases of melioidosis. Extracellular DNA (eDNA) is an essential component for biofilm development and maturation in many bacteria. The aim of this study was to investigate the eDNA released by B. pseudomallei during biofilm formation using DNase treatment. The extent of biofilm formation and quantity of eDNA were assessed by crystal-violet staining and fluorescent dye-based quantification, respectively, and visualized by confocal laser scanning microscopy (CLSM). Variation in B. pseudomallei biofilm formation and eDNA quantity was demonstrated among isolates. CLSM images of biofilms stained with FITC-ConA (biofilm) and TOTO-3 (eDNA) revealed the localization of eDNA in the biofilm matrix. A positive correlation of biofilm biomass with quantity of eDNA during the 2-day biofilm-formation observation period was found. The increasing eDNA quantity over time, despite constant living/dead ratios of bacterial cells during the experiment suggests that eDNA is delivered from living bacterial cells. CLSM images demonstrated that depletion of eDNA by DNase I significantly lessened bacterial attachment (if DNase added at 0 h) and biofilm developing stages (if added at 24 h) but had no effect on mature biofilm (if added at 45 h). Collectively, our results reveal that eDNA is released from living B. pseudomallei and is correlated with biofilm formation. It was also apparent that eDNA is essential during bacterial cell attachment and biofilm-forming steps. The depletion of eDNA by DNase may provide an option for the prevention or dispersal of B. pseudomallei biofilm.
Biofilm-associated Burkholderia pseudomallei infection contributes to antibiotic resistance and relapse of melioidosis. Burkholderia pseudomallei biofilm matrix contains extracellular DNA (eDNA) that is crucial for biofilm establishment. However, the contribution of eDNA to antibiotic resistance by B. pseudomallei remains unclear. In this study, we first demonstrated in vitro that DNase I with the administration of ceftazidime (CAZ) at 24 h considerably inhibited the 2-day biofilm formation and reduced the number of viable biofilm cells of clinical B. pseudomallei isolates compared to biofilm treated with CAZ alone. A 3–4 log reduction in numbers of viable cells embedded in the 2-day biofilm was observed when CAZ was combined with DNase I. Confocal laser-scanning microscope visualization emphasized the competence of DNase I followed by CAZ supplementation to significantly limit B. pseudomallei biofilm development and to eradicate viable embedded B. pseudomallei biofilm cells. Furthermore, DNase I supplemented with chitosan (CS) linked with CAZ (CS/CAZ) significantly eradicated shedding planktonic and biofilm cells. These findings indicated that DNase I effectively degraded eDNA leading to biofilm inhibition and dispersion, subsequently allowing CAZ and CS/CAZ to eradicate both shedding planktonic and embedded biofilm cells. These findings provide efficient strategies to interrupt biofilm formation and improve antibiotic susceptibility of biofilm-associated infections.
Biofilm-associated Burkholderia pseudomallei infection contributes to antibiotic resistance and relapse of melioidosis. Burkholderia pseudomallei biofilm matrix contains extracellular DNA (eDNA) that is crucial for biofilm establishment. However, the contribution of eDNA to antibiotic resistance by B. pseudomallei remains unclear. In this study, we first demonstrated in vitro that DNase I with the administration of ceftazidime (CAZ) at 24 h considerably inhibited the 2-day biofilm formation and reduced the number of viable biofilm cells of clinical B. pseudomallei isolates compared to biofilm treated with CAZ alone. A 3–4 log reduction in numbers of viable cells embedded in the 2-day biofilm was observed when CAZ was combined with DNase I. Confocal laser-scanning microscope visualization emphasized the competence of DNase I followed by CAZ supplementation to significantly limit B. pseudomallei biofilm development and to eradicate viable embedded B. pseudomallei biofilm cells. Furthermore, DNase I supplemented with chitosan (CS) linked with CAZ (CS/CAZ) significantly eradicated shedding planktonic and biofilm cells. These findings indicated that DNase I effectively degraded eDNA leading to biofilm inhibition and dispersion, subsequently allowing CAZ and CS/CAZ to eradicate both shedding planktonic and embedded biofilm cells. These findings may be applied in development of novel approaches for management of biofilm-associated infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.