Diclofenac (DCF) is a prevalent anti-inflammatory drug used throughout the world. Intensive researches carried out in the past few decades have confirmed the global ubiquity of DCF in various environmental compartments. Its frequent occurrence in freshwater environments and its potential toxicity towards several organisms such as fish and mussels makes DCF an emerging environmental contaminant. At typical detected environmental concentrations, the drug does not exhibit toxic effects towards living organisms, albeit chronic exposure may lead to severe effects. For DCF, about 30-70% removal has been obtained through the conventional treatment system in wastewater treatment plant being the major primary sink. Thus, the untreated DCF will pass to surface water. DCF can interact with other inorganic contaminants in the environment particularly in wastewater treatment plant, such as metals, organic contaminants and even with DCF metabolites. This process may lead to the creation of another possible emerging contaminant. In the present context, environmental fate of DCF in different compartments such as soil and water has been addressed with an overview of current treatment methods. In addition, the toxicity concerns regarding DCF in aquatic as well as terrestrial environment along with an introduction to the metabolites of DCF through consumption as well as abiotic degradation routes are also discussed. Further studies are required to better assess the fate and toxicological effects of DCF and its metabolites and must consider the possible interaction of DCF with other contaminants to develop an effective treatment method for DCF and its traces.
The green synthesis (GS) of different metallic nanoparticles (MNPs) has re-evaluated plants, animals and microorganisms for their natural potential to reduce metallic ions into neutral atoms at no expense of toxic and hazardous chemicals. Contrary to chemically synthesized MNPs, GS offers advantages of enhanced biocompatibility and thus has better scope for biomedical applications. Plant, animals and microorganisms belonging to lower and higher taxonomic groups have been experimented for GS of MNPs, such as gold (Au), silver (Ag), copper oxide (CuO), zinc oxide (ZnO), iron (Fe 2 O 3 ), palladium (Pd), platinum (Pt), nickel oxide (NiO) and magnesium oxide (MgO). Among the different plant groups used for GS, angiosperms and algae have been explored the most with great success. GS with animal-derived biomaterials, such as chitin, silk (sericin, fibroin and spider silk) or cell extract of invertebrates have also been reported. Gram positive and gram negative bacteria, different fungal species and virus particles have also shown their abilities in the reduction of metal ions. However, not a thumb rule, most of the reducing agents sourced from living world also act as capping agents and render MNPs less toxic or more biocompatible. The most unexplored area so far in GS is the mechanism studies for different natural reducing agents expect for few of them, such as tea and neem plants. This review encompasses the recent advances in the GS of MNPs using plants, animals and microorganisms and analyzes the key points and further discusses the pros and cons of GS in respect of chemical synthesis.
The discovery of the growth promoting property of antibiotics led to their use as antibiotic feed additives (AFAs) in animal feed at sub-therapeutic doses. Although this has been beneficial for animal health and productivity, it has been, essentially, a double-edged sword. The continued and non-judicious use of AFAs has led to the selection and dissemination of antibiotic-resistant strains of poultry pathogens such as Salmonella, Campylobacter and Escherichia coli. The rapid spread of drug-resistant pathogens as well as emergence of antibiotic-related environmental pollutants is of global concern. Hence, the identification and development of new and effective alternatives to antibiotics that do not hinder productivity is imperative. For this, it is essential to understand not only the molecular basis of development of resistance to AFAs but also the mechanisms of action of AFA alternatives and how they differ from AFAs. This review provides a molecular perspective on the alternatives to antibiotics that have been proposed till date and their current trends, as well as novel approaches such as development of improved delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.