The work deals with a significant problem of ensuring that the execution time of a firmware running inside a microcontroller-based real-time embedded system never goes out of its expected range, no matter for how long the embedded system has been used. Once having been tested before the first usage, a newly created embedded system is gradually getting slower in its response, due to the fact that its hardware components get worn-out with aging. A possible solution is a replacement of the hardware components that most contribute to such a change in the response time of the embedded system. If such a replacement takes place too far in advance, long before hardware components actually start showing any decline in their response time, the above-mentioned solution is cost-ineffective and impractical, as it leads to a waste of equipment and efforts. We introduce a method for predicting the appropriate maintenance period of a real-time embedded system on the basis of the characteristics of its hardware components.
Abstract-The paper deals with the problem of estimating the execution time of firmware. Any firmware is bound to wait for a response from peripheral devices such as external memory chips, displays, analog-todigital converters, etc. The firmware's execution is frozen until the expected response is obtained. Thus, any firmware's execution time depends not only on the computational resources of the embedded system being inspected but also on peripheral devices each of which is able to perform a set of operations during some random time period residing, however, within a known interval. The paper introduces a model of a computer application for evaluation of microcontroller-based embedded systems' firmware's execution time that takes into consideration the type of the microcontroller, the total duration of all the assembler-like instructions for a specific microcontroller, all the occasions of waiting for a response from hardware components, and the possible time periods for all the responses being waited for. Besides, we proposed the architecture of the computer application that assumes a reusable database retaining data on microcontrollers' instructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.