Homologues and xenogenous bones are currently the most used grafts in dentistry because of their performance. However, some inherent disadvantages of these materials have not yet been overcome, such as the lack of biological properties to improve the new bone formation in situ and the long remodeling time. The main aim of this work was to improve the performance of the commercial bone-based grafts and study its properties in vitro. For this purpose, rat bone was combined with bioglass, a synthetic biomaterial that displays high degradation kinetics and bioactivity properties, endowed with biological properties. The sol-gel method was used for 45S5 bioglass (45S5) synthesis, using TEOS and water soluble salts as starting materials. 45S5 was then associated with the rat bone, generating the new graft. FTIR results indicated the hydroxyapatite formation after the bioactivity tests. SEM and bioactivity results were used to assess the evolution of the graft. The bioactivity tests showed that after 30 days the mass gain of about 30 wt.% was due to the deposition of hydroxyapatite crystals at the surface of the grafts, suggesting the potential properties of this new graft for application in implantology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.