In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4<OR<10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
Survivors of head and neck squamous cell cancers (HNSCC) frequently complain of taste dysfunction long after radiation therapy is completed, which contradicts findings from most sensory evaluation studies, which predict dysfunction should resolve few months after treatment. Therefore, it remains unclear whether taste and smell function fully recovers in HNSCC survivors. We evaluated HNSCC survivors (n=40; age 63±12 years, mean ± standard deviation) who received radiation therapy between 6 months and 10 years before recruitment and compared their responses to those of a healthy control group (n=20) equivalent in age, sex, race, smoking history, and body mass index. We assessed regional (tongue tip) and whole-mouth taste intensity perception using the general Labeled Magnitude Scale and smell function using the University of Pennsylvania Smell Identification Test (UPSIT). To determine possible differences between groups in retronasal smell perception, we used solutions of sucrose with strawberry extract, citric acid with lemon extract, sodium chloride in vegetable broth, and caffeine in coffee and asked participants to rate perceived smell and taste intensities with and without nose clips. We found groups had similar UPSIT and taste intensity scores when solutions were experienced in the whole mouth. However, HNSCC survivors were less likely to identify low concentrations of bitter, sweet, or salty stimuli in the tongue tip relative to healthy controls. Our findings suggest persistent and subtle localized damage to the chorda tympani or to the taste buds in the fungiform papillae of HNSCC survivors, which could explain their sensory complaints long after completion of radiotherapy.
This cross-sectional study compares alcohol pharmacokinetics in patients who underwent sleeve gastrectomy with control participants who did not undergo surgery.
Background: Wolfram syndrome is a rare genetic disease characterized by insulin-dependent diabetes, optic nerve atrophy, sensorineural hearing loss and neurodegeneration. Although olfactory dysfunction, a classical clinical marker of neurodegenerative processes, has been reported in Wolfram syndrome, its use as a clinical marker in Wolfram is limited due to data scarcity. In addition, it is unknown whether Wolfram syndrome affects the sense of taste. Methods: Smell and taste perception were assessed in participants with Wolfram syndrome (n = 40) who were 15.1 ± 6.0 years of age (range: 5.1-28.7 years) and two sex-and age-matched control groups: one group with type 1 diabetes mellitus (T1D; n = 25) and a healthy control group (HC; n = 29). Smell sensitivity was assessed by measuring n-butanol detection thresholds and smell identification by using the University of Pennsylvania Smell Identification Test (UPSIT). Taste function was assessed using NIH Toolbox, which includes the assessment of sucrose (sweet) taste preference, and perceived intensity of sucrose, sodium chloride (salty), and quinine hydrochloride (bitter) both in the tip of the tongue (regional test) and the whole mouth. Results: Smell sensitivity was not significantly different among groups; however, smell identification was impaired in Wolfram syndrome, as reflected by significantly lower UPSIT scores in Wolfram syndrome compared to HC and T1D (P < 0.001). Compared to participants in the control groups, participants with Wolfram syndrome had a blunted perception of sweetness and saltiness when taste stimuli were applied regionally (P < 0.05), but differences in perceived intensity were no longer significant among groups when taste stimuli were tasted with the whole mouth. Groups preferred similar sucrose concentrations. Conclusion: Wolfram syndrome was associated with olfactory dysfunction. However, the olfactory dysfunction was qualitative (related to smell identification) and not secondary to olfactory insensitivity or diabetes, suggesting is arising from dysfunction in central olfactory brain regions. In contrast to olfaction, and despite decreased perception of taste intensity in the anterior tongue, the sense of taste was overall well-conserved in individuals with Wolfram syndrome. Future longitudinal studies of taste and smell perception in Wolfram syndrome will be important to determine the use of the chemical senses as clinical markers of disease progression.
BACKGROUND : Wolfram syndrome is a rare genetic disease characterized by insulin-dependent diabetes, optic nerve atrophy, sensorineural hearing loss and neurodegeneration. Although olfactory dysfunction, a classical clinical marker of neurodegenerative processes, has been reported in Wolfram syndrome, its use as a clinical marker in Wolfram is limited due to data scarcity. In addition, it is unknown whether Wolfram syndrome affects the sense of taste. METHODS: Smell and taste perception were assessed in participants with Wolfram syndrome (n=40) who were 15.1 ± 6.0 years of age (range: 5.1- 28.7 years) and two sex- and age-matched control groups: one group with type 1 diabetes mellitus (T1D; n=25) and a healthy control group (HC; n=29). Smell sensitivity was assessed by measuring n-butanol detection thresholds and smell identification by using the University of Pennsylvania Smell Identification Test (UPSIT). Taste function was assessed using NIH Toolbox, which includes the assessment of sucrose (sweet) taste preference, and perceived intensity of sucrose, sodium chloride (salty), and quinine hydrochloride (bitter) both in the tip of the tongue (regional test) and the whole mouth. RESULTS: Smell sensitivity was not significantly different among groups; however, smell identification was impaired in Wolfram syndrome, as reflected by significantly lower UPSIT scores in Wolfram syndrome compared to HC and T1D (P<0.001). Compared to participants in the control groups, participants with Wolfram syndrome had a blunted perception of sweetness and saltiness when taste stimuli were applied regionally (P<0.05), but differences in perceived intensity were no longer significant among groups when taste stimuli were tasted with the whole mouth. Groups preferred similar sucrose concentrations. CONCLUSION : Wolfram syndrome was associated with olfactory dysfunction. However, the olfactory dysfunction was qualitative (related to smell identification) and not secondary to olfactory insensitivity or diabetes, suggesting is arising from dysfunction in central olfactory brain regions. In contrast to olfaction, and despite decreased perception of taste intensity in the anterior tongue, the sense of taste was overall well-conserved in individuals with Wolfram syndrome. Future longitudinal studies of taste and smell perception in Wolfram syndrome will be important to determine the use of the chemical senses as clinical markers of disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.