Under stable atmospheric conditions, the zenithal brightness of the urban sky varies throughout the night following the time course of the anthropogenic emissions of light. Different types of artificial light sources (e.g. streetlights, residential, and vehicle lights) present specific time signatures, and this feature makes it possible to estimate the amount of sky brightness contributed by each one of them. Our approach is based on transforming the time representation of the zenithal sky brightness into a modal coefficients one, in terms of the time course signatures of the sources. The modal coefficients, and hence the absolute and relative contributions of each type of source, can be estimated from the measured brightness by means of linear least squares fits. A method for determining the time signatures is described, based on wide-field time-lapse photometry of the urban nightscape. Our preliminary results suggest that artificial light leaking out of the windows of residential buildings may account for a significant share of the timevarying part of the zenithal sky brightness, whilst the contribution of the vehicle lights seems to be significantly smaller.
Monitoring long-term trends in the evolution of the anthropogenic night sky brightness is a demanding task due to the high dynamic range of the artificial and natural light emissions and the high variability of the atmospheric conditions that determine the amount of light scattered in the direction of the observer. In this paper, we analyze the use of a statistical indicator, the mFWHM, to assess the night sky brightness changes over periods of time larger than one year. The mFWHM is formally defined as the average value of the recorded magnitudes contained within the full width at half-maximum region of the histogram peak corresponding to the scattering of artificial light under clear skies in the conditions of a moonless astronomical night (sun below −18°, and moon below −5°). We apply this indicator to the measurements acquired by the 14 SQM detectors of the Galician Night Sky Brightness Monitoring Network during the period 2015–2018. Overall, the available data suggest that the zenithal readings in the Sky Quality Meter (SQM) device-specific photometric band tended to increase during this period of time at an average rate of +0.09 magSQM/arcsec2 per year.
Light pollution poses a growing threat to optical astronomy, in addition to its detrimental impacts on the natural environment, the intangible heritage of humankind related to the contemplation of the starry sky and, potentially, on human health. The computation of maps showing the spatial distribution of several light pollution related functions (e.g. the anthropogenic zenithal night sky brightness, or the average brightness of the celestial hemisphere) is a key tool for light pollution monitoring and control, providing the scientific rationale for the adoption of informed decisions on public lighting and astronomical site preservation. The calculation of such maps from satellite radiance data for wide regions of the planet with sub-kilometric spatial resolution often implies a huge amount of basic pixel operations, requiring in many cases extremely large computation times. In this paper we show that, using adequate geographical projections, a wide set of light pollution map calculations can be reframed in terms of two-dimensional convolutions that can be easily evaluated using conventional fast Fourier-transform (FFT) algorithms, with typical computation times smaller than 10 −6 s per output pixel.
Several light pollution indicators are commonly used to monitor the effects of the transition from outdoor lighting systems based on traditional gas-discharge lamps to solid-state light sources. In this work we analyze a subset of these indicators, including the artificial zenithal night sky brightness in the visual photopic and scotopic bands, the brightness in the specific photometric band of the widely used Sky Quality Meter (SQM), and the top-of-atmosphere radiance detected by the VIIRS-DNB radiometer onboard the satellite Suomi-NPP. Using a single-scattering approximation in a layered atmosphere we quantitatively show that, depending on the transition scenarios, these indicators may show different, even opposite behaviors. This is mainly due to the combined effects of the changes in the sources' spectra and angular radiation patterns, the wavelength-dependent atmospheric propagation processes and the differences in the detector spectral sensitivity bands. It is suggested that the possible presence of this differential behavior should be taken into account when evaluating light pollution indicator datasets for assessing the outcomes of public policy decisions regarding the upgrading of outdoor lighting systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.