In this paper, we review the information accumulated over the years regarding the phenomena of resetting and entrainment of reentrant arrhythmias. Over three decades of research and clinical applications, these phenomena have demonstrated that they stay as a main tool for an intellectual understanding of reentry and to base strategies for localization of critical areas for ablative therapies. This review will be divided into two parts. This first part deals with the bases for the concept development, the means for the detection of these phenomena, and their mechanistic implications. Resetting is described as a particular response of a given rhythm to an external perturbation, indicating interaction between them. Entrainment indicates continuous reset of the rhythm when the perturbation is repetitive. The mechanisms that explain these responses in reentrant rhythms are presented. Fusion, both at the surface electrocardiogram and at the level of intracardiac recordings, is discussed in detail, with its value and limitations as a key concept to recognize entrainment and reentry. Computer simulations are used as an aid to a better understanding. Differences between resetting and entrainment are considered, and a pacing protocol to study these phenomena described.
Holter systems record the electrocardiogram (ECG), which is used to identify beat families according to their origin and severity. Many systems have been proposed using signal conditioning and machine learning (ML) classification algorithms for beat family recognition. However, the design stage of these systems does not always consider the impact that tuning the intermediate blocks has on the beat family classification and the overall accuracy. We propose to use a new index based on the confusion matrices and bootstrap resampling to summarize the global performance for all family beats, so-called differential beat accuracy (DBA), which is obtained as the total number of beats correctly classified in each class minus the total number of beats incorrectly classified. We addressed the sensitivity of the different subblocks when creating a simple beat family classifier consisting of signal preprocessing blocks and a simple k-Nearest Neighbors classifier. The MIT-BIH Arrhythmia database was used for this purpose, following existing literature on the field. We benchmarked two implementations, one for biclass classification (supraventricular vs. non-supraventricular origin) and another for multiclass beat labeling. The usual preprocessing stages were scrutinized with the DBA to evaluate their impact on the quality of the complete ML system, such as signal detrending and filtering, beat balancing, or inter-beat distance. With the support of the DBA, our methodology was able to detect significant differences in terms of some of the options in the algorithm design. For instance, balancing the number of beats in each class for training significantly improved the classification accuracy of the minority classes at 3.22% for the multiclass dataset but not for the biclass dataset. Also, accuracy improved significantly by about 6% for the biclass regrouping without data normalization, whereas overall accuracy improved significantly by about 7% for the multiclass regrouping with data normalization. In addition, the analysis of the statistical dispersion of confusion matrices showed that this database should be considered with caution when training ML-based family classifiers. We can conclude that the proposed DBA can provide us with statistically principled criteria for designing ML-based classifiers and reducing their bias in strongly unbalanced beat family datasets.
During the last years, Electrocardiographic Imaging (ECGI) has emerged as a powerful and promising clinical tool to support cardiologists. Starting from a plurality of potential measurements on the torso, ECGI yields a noninvasive estimation of their causing potentials on the epicardium. This unprecedented amount of measured cardiac signals needs to be conditioned and adapted to current knowledge and methods in cardiac electrophysiology in order to maximize its support to the clinical practice. In this setting, many cardiac indices are defined in terms of the so-called bipolar electrograms, which correspond with differential potentials between two spatially close potential measurements. Our aim was to contribute to the usefulness of ECGI recordings in the current knowledge and methods of cardiac electrophysiology. For this purpose, we first analyzed the basic stages of conventional cardiac signal processing and scrutinized the implications of the spatial-temporal nature of signals in ECGI scenarios. Specifically, the stages of baseline wander removal, low-pass filtering, and beat segmentation and synchronization were considered. We also aimed to establish a mathematical operator to provide suitable bipolar electrograms from the ECGI-estimated epicardium potentials. Results were obtained on data from an infarction patient and from a healthy subject. First, the low-frequency and high-frequency noises are shown to be non-independently distributed in the ECGI-estimated recordings due to their spatial dimension. Second, bipolar electrograms are better estimated when using the criterion of the maximum-amplitude difference between spatial neighbors, but also a temporal delay in discrete time of about 40 samples has to be included to obtain the usual morphology in clinical bipolar electrograms from catheters. We conclude that spatial-temporal digital signal processing and bipolar electrograms can pave the way towards the usefulness of ECGI recordings in the cardiological clinical practice. The companion paper is devoted to analyzing clinical indices obtained from ECGI epicardial electrograms measuring waveform variability and repolarization tissue properties.
BackgroundThe inverse problem in electrophysiology consists of the accurate estimation of the intracardiac electrical sources from a reduced set of electrodes at short distances and from outside the heart. This estimation can provide an image with relevant knowledge on arrhythmia mechanisms for the clinical practice. Methods based on truncated singular value decomposition (TSVD) and regularized least squares require a matrix inversion, which limits their resolution due to the unavoidable low-pass filter effect of the Tikhonov regularization techniques.MethodsWe propose to use, for the first time, a Mercer’s kernel given by the Laplacian of the distance in the quasielectrostatic field equations, hence providing a Support Vector Regression (SVR) formulation by following the principles of the Dual Signal Model (DSM) principles for creating kernel algorithms.ResultsSimulations in one- and two-dimensional models show the performance of our Laplacian distance kernel technique versus several conventional methods. Firstly, the one-dimensional model is adjusted for yielding recorded electrograms, similar to the ones that are usually observed in electrophysiological studies, and suitable strategy is designed for the free-parameter search. Secondly, simulations both in one- and two-dimensional models show larger noise sensitivity in the estimated transfer matrix than in the observation measurements, and DSM−SVR is shown to be more robust to noisy transfer matrix than TSVD.ConclusionThese results suggest that our proposed DSM−SVR with Laplacian distance kernel can be an efficient alternative to improve the resolution in current and emerging intracardiac imaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.